Звание жореса алферова. Академик Жорес Алферов - шарлатан

И создание быстрых опто- и микроэлектронных компонентов). Вице-президент РАН с 1991 года. Председатель Президиума Санкт-Петербургского научного центра РАН . Член КПСС с 1965 года .

В 1970 году Алфёров защитил диссертацию, обобщив новый этап исследований гетеропереходов в полупроводниках, и получил степень доктора физико-математических наук . В 1972 году Алфёров стал профессором , а через год - заведующим базовой кафедрой оптоэлектроники ЛЭТИ . С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. С 1987 по май 2003 года - директор .

В 2003 году Алфёров оставил пост руководителя и до 2006 года занимал пост председателя учёного совета института. Однако Алфёров сохранил влияние на ряд научных структур, среди которых: , НТЦ Центр микроэлектроники и субмикронных гетероструктур, научно-образовательный комплекс (НОК) Физико-технического института и физико-технический лицей . С 1988 г. (момента основания) декан физико-технического факультета СПбГПУ .

В 1990-1991 годах - вице-президент АН СССР , председатель Президиума Ленинградского научного центра. С 2003 года - председатель Научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Академик АН СССР (1979), затем РАН , почётный академик Российской академии образования . Вице-президент РАН , председатель президиума Санкт-Петербургского научного центра РАН. Главный редактор «Писем в Журнал технической физики».

Был главным редактором журнала «Физика и техника полупроводников», членом редакционной коллегии журнала «Поверхность: Физика, химия, механика», членом редакционной коллегии журнала «Наука и жизнь ». Был членом правления Общества «Знание» РСФСР.

Являлся инициатором учреждения в 2002 году премии «Глобальная энергия », до 2006 года возглавлял Международный комитет по её присуждению. Считается, что присуждение этой премии самому Алфёрову в 2005 году, стало одной из причин оставления им этого поста.

Является ректором-организатором нового Академического университета .

С 2001 года Президент Фонда поддержки образования и науки (Алфёровского фонда).

5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково .

С 2010 года - сопредседатель Консультативного научного Совета Фонда «Сколково» .

В 2013 году баллотировался на пост президента РАН и, получив 345 голосов, занял второе место.

Политическая деятельность

Взгляды

После жесточайших реформ 1990-х годов, многое утратив, РАН тем не менее сохранила свой научный потенциал гораздо лучше, чем отраслевая наука и вузы. Противопоставление академической и вузовской науки совершенно противоестественно и может проводиться только людьми, преследующими свои и очень странные политические цели, весьма далёкие от интересов страны.

Награды и премии

Награды России и СССР

  • Полный кавалер ордена «За заслуги перед Отечеством» :
  • Медали
  • Государственная премия Российской Федерации 2001 года в области науки и техники (5 августа 2002) за цикл работ «Фундаментальные исследования процессов формирования и свойств гетероструктур с квантовыми точками и создание лазеров на их основе »
  • Ленинская премия (1972) - за фундаментальные исследования гетеропереходов в полупроводниках и создание новых приборов на их основе
  • Государственная премия СССР (1984) - за разработку изопериодических гетероструктур на основе четверных твёрдых растворов полупроводниковых соединений A3B5

Иностранные награды

Прочие награды и звания

  • Медаль Стюарта Баллантайна (Институт Франклина, США, 1971) - за теоретические и экспериментальные исследования двойных лазерных гетероструктур, благодаря которым были созданы источники лазерного излучения малых размеров, работающие в непрерывном режиме при комнатной температуре
  • Хьюллет-Паккардовская премия (Европейское физическое общество , 1978) - за новые работы в области гетеропереходов
  • Золотая медаль Генриха Велкера от Симпозиума по GaAs (1987) - за пионерские работы по теории и технологии приборов на основе соединений III-V групп и разработку инжекционных лазеров и фотодиодов
  • Премия имени Карпинского (ФРГ , 1989) - за вклад в развитие физики и техники гетероструктур
  • XLIX Менделеевский чтец - 19 февраля 1993 года
  • Премия имени А. Ф. Иоффе (РАН, 1996) - за цикл работ «Фотоэлектрические преобразователи солнечного излучения на основе гетероструктур»
  • Почетный доктор СПбГУП с 1998 года
  • Демидовская премия (Научный Демидовский фонд , Россия, 1999)
  • Золотая медаль имени А. С. Попова (РАН, 1999)
  • Премия Ника Холоньяка (Оптическое общество Америки , 2000)
  • Нобелевская премия (Швеция , 2000) - за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники
  • Премия Киото (Инамори фонд, Япония, 2001) - за успехи в создании полупроводниковых лазеров, работающих в непрерывном режиме при комнатных температурах - пионерский шаг в оптоэлектронике
  • Премия В. И. Вернадского (НАН Украины, 2001)
  • Премия «Российский Национальный Олимп». Титул «Человек-легенда» (РФ, 2001)
  • Золотая медаль SPIE (SPIE, 2002)
  • Награда «Золотая тарелка» (Академия достижений, США, 2002)
  • Международная энергетическая премия «Глобальная энергия » (Россия, 2005)
  • Звание и медаль Почётного профессора МФТИ (2008)
  • Медаль "За вклад в развитие нанонауки и нанотехнологий" от ЮНЕСКО (2010)
  • Награда «Почётный орден РАУ». Удостоен звания «Почётный доктор Российско-Армянского (Славянского) университета» (ГОУ ВПО Российско-Армянский (Славянский) университет, Армения, 2011).
  • Международная премия Карла Боэра (2013)
  • Присвоено звание «Почётный профессор МИЭТ» (НИУ МИЭТ 2015)

См. также

Напишите отзыв о статье "Алфёров, Жорес Иванович"

Примечания

Отрывок, характеризующий Алфёров, Жорес Иванович

– А помнишь ты, – сказала Наташа с задумчивой улыбкой, как давно, давно, мы еще совсем маленькие были, дяденька нас позвал в кабинет, еще в старом доме, а темно было – мы это пришли и вдруг там стоит…
– Арап, – докончил Николай с радостной улыбкой, – как же не помнить? Я и теперь не знаю, что это был арап, или мы во сне видели, или нам рассказывали.
– Он серый был, помнишь, и белые зубы – стоит и смотрит на нас…
– Вы помните, Соня? – спросил Николай…
– Да, да я тоже помню что то, – робко отвечала Соня…
– Я ведь спрашивала про этого арапа у папа и у мама, – сказала Наташа. – Они говорят, что никакого арапа не было. А ведь вот ты помнишь!
– Как же, как теперь помню его зубы.
– Как это странно, точно во сне было. Я это люблю.
– А помнишь, как мы катали яйца в зале и вдруг две старухи, и стали по ковру вертеться. Это было, или нет? Помнишь, как хорошо было?
– Да. А помнишь, как папенька в синей шубе на крыльце выстрелил из ружья. – Они перебирали улыбаясь с наслаждением воспоминания, не грустного старческого, а поэтического юношеского воспоминания, те впечатления из самого дальнего прошедшего, где сновидение сливается с действительностью, и тихо смеялись, радуясь чему то.
Соня, как и всегда, отстала от них, хотя воспоминания их были общие.
Соня не помнила многого из того, что они вспоминали, а и то, что она помнила, не возбуждало в ней того поэтического чувства, которое они испытывали. Она только наслаждалась их радостью, стараясь подделаться под нее.
Она приняла участие только в том, когда они вспоминали первый приезд Сони. Соня рассказала, как она боялась Николая, потому что у него на курточке были снурки, и ей няня сказала, что и ее в снурки зашьют.
– А я помню: мне сказали, что ты под капустою родилась, – сказала Наташа, – и помню, что я тогда не смела не поверить, но знала, что это не правда, и так мне неловко было.
Во время этого разговора из задней двери диванной высунулась голова горничной. – Барышня, петуха принесли, – шопотом сказала девушка.
– Не надо, Поля, вели отнести, – сказала Наташа.
В середине разговоров, шедших в диванной, Диммлер вошел в комнату и подошел к арфе, стоявшей в углу. Он снял сукно, и арфа издала фальшивый звук.
– Эдуард Карлыч, сыграйте пожалуста мой любимый Nocturiene мосье Фильда, – сказал голос старой графини из гостиной.
Диммлер взял аккорд и, обратясь к Наташе, Николаю и Соне, сказал: – Молодежь, как смирно сидит!
– Да мы философствуем, – сказала Наташа, на минуту оглянувшись, и продолжала разговор. Разговор шел теперь о сновидениях.
Диммлер начал играть. Наташа неслышно, на цыпочках, подошла к столу, взяла свечу, вынесла ее и, вернувшись, тихо села на свое место. В комнате, особенно на диване, на котором они сидели, было темно, но в большие окна падал на пол серебряный свет полного месяца.
– Знаешь, я думаю, – сказала Наташа шопотом, придвигаясь к Николаю и Соне, когда уже Диммлер кончил и всё сидел, слабо перебирая струны, видимо в нерешительности оставить, или начать что нибудь новое, – что когда так вспоминаешь, вспоминаешь, всё вспоминаешь, до того довоспоминаешься, что помнишь то, что было еще прежде, чем я была на свете…
– Это метампсикова, – сказала Соня, которая всегда хорошо училась и все помнила. – Египтяне верили, что наши души были в животных и опять пойдут в животных.
– Нет, знаешь, я не верю этому, чтобы мы были в животных, – сказала Наташа тем же шопотом, хотя музыка и кончилась, – а я знаю наверное, что мы были ангелами там где то и здесь были, и от этого всё помним…
– Можно мне присоединиться к вам? – сказал тихо подошедший Диммлер и подсел к ним.
– Ежели бы мы были ангелами, так за что же мы попали ниже? – сказал Николай. – Нет, это не может быть!
– Не ниже, кто тебе сказал, что ниже?… Почему я знаю, чем я была прежде, – с убеждением возразила Наташа. – Ведь душа бессмертна… стало быть, ежели я буду жить всегда, так я и прежде жила, целую вечность жила.
– Да, но трудно нам представить вечность, – сказал Диммлер, который подошел к молодым людям с кроткой презрительной улыбкой, но теперь говорил так же тихо и серьезно, как и они.
– Отчего же трудно представить вечность? – сказала Наташа. – Нынче будет, завтра будет, всегда будет и вчера было и третьего дня было…
– Наташа! теперь твой черед. Спой мне что нибудь, – послышался голос графини. – Что вы уселись, точно заговорщики.
– Мама! мне так не хочется, – сказала Наташа, но вместе с тем встала.
Всем им, даже и немолодому Диммлеру, не хотелось прерывать разговор и уходить из уголка диванного, но Наташа встала, и Николай сел за клавикорды. Как всегда, став на средину залы и выбрав выгоднейшее место для резонанса, Наташа начала петь любимую пьесу своей матери.
Она сказала, что ей не хотелось петь, но она давно прежде, и долго после не пела так, как она пела в этот вечер. Граф Илья Андреич из кабинета, где он беседовал с Митинькой, слышал ее пенье, и как ученик, торопящийся итти играть, доканчивая урок, путался в словах, отдавая приказания управляющему и наконец замолчал, и Митинька, тоже слушая, молча с улыбкой, стоял перед графом. Николай не спускал глаз с сестры, и вместе с нею переводил дыхание. Соня, слушая, думала о том, какая громадная разница была между ей и ее другом и как невозможно было ей хоть на сколько нибудь быть столь обворожительной, как ее кузина. Старая графиня сидела с счастливо грустной улыбкой и слезами на глазах, изредка покачивая головой. Она думала и о Наташе, и о своей молодости, и о том, как что то неестественное и страшное есть в этом предстоящем браке Наташи с князем Андреем.
Диммлер, подсев к графине и закрыв глаза, слушал.
– Нет, графиня, – сказал он наконец, – это талант европейский, ей учиться нечего, этой мягкости, нежности, силы…
– Ах! как я боюсь за нее, как я боюсь, – сказала графиня, не помня, с кем она говорит. Ее материнское чутье говорило ей, что чего то слишком много в Наташе, и что от этого она не будет счастлива. Наташа не кончила еще петь, как в комнату вбежал восторженный четырнадцатилетний Петя с известием, что пришли ряженые.
Наташа вдруг остановилась.
– Дурак! – закричала она на брата, подбежала к стулу, упала на него и зарыдала так, что долго потом не могла остановиться.
– Ничего, маменька, право ничего, так: Петя испугал меня, – говорила она, стараясь улыбаться, но слезы всё текли и всхлипывания сдавливали горло.
Наряженные дворовые, медведи, турки, трактирщики, барыни, страшные и смешные, принеся с собою холод и веселье, сначала робко жались в передней; потом, прячась один за другого, вытеснялись в залу; и сначала застенчиво, а потом всё веселее и дружнее начались песни, пляски, хоровые и святочные игры. Графиня, узнав лица и посмеявшись на наряженных, ушла в гостиную. Граф Илья Андреич с сияющей улыбкой сидел в зале, одобряя играющих. Молодежь исчезла куда то.
Через полчаса в зале между другими ряжеными появилась еще старая барыня в фижмах – это был Николай. Турчанка был Петя. Паяс – это был Диммлер, гусар – Наташа и черкес – Соня, с нарисованными пробочными усами и бровями.
После снисходительного удивления, неузнавания и похвал со стороны не наряженных, молодые люди нашли, что костюмы так хороши, что надо было их показать еще кому нибудь.
Николай, которому хотелось по отличной дороге прокатить всех на своей тройке, предложил, взяв с собой из дворовых человек десять наряженных, ехать к дядюшке.
– Нет, ну что вы его, старика, расстроите! – сказала графиня, – да и негде повернуться у него. Уж ехать, так к Мелюковым.
Мелюкова была вдова с детьми разнообразного возраста, также с гувернантками и гувернерами, жившая в четырех верстах от Ростовых.
– Вот, ma chere, умно, – подхватил расшевелившийся старый граф. – Давай сейчас наряжусь и поеду с вами. Уж я Пашету расшевелю.
Но графиня не согласилась отпустить графа: у него все эти дни болела нога. Решили, что Илье Андреевичу ехать нельзя, а что ежели Луиза Ивановна (m me Schoss) поедет, то барышням можно ехать к Мелюковой. Соня, всегда робкая и застенчивая, настоятельнее всех стала упрашивать Луизу Ивановну не отказать им.
Наряд Сони был лучше всех. Ее усы и брови необыкновенно шли к ней. Все говорили ей, что она очень хороша, и она находилась в несвойственном ей оживленно энергическом настроении. Какой то внутренний голос говорил ей, что нынче или никогда решится ее судьба, и она в своем мужском платье казалась совсем другим человеком. Луиза Ивановна согласилась, и через полчаса четыре тройки с колокольчиками и бубенчиками, визжа и свистя подрезами по морозному снегу, подъехали к крыльцу.
Наташа первая дала тон святочного веселья, и это веселье, отражаясь от одного к другому, всё более и более усиливалось и дошло до высшей степени в то время, когда все вышли на мороз, и переговариваясь, перекликаясь, смеясь и крича, расселись в сани.
Две тройки были разгонные, третья тройка старого графа с орловским рысаком в корню; четвертая собственная Николая с его низеньким, вороным, косматым коренником. Николай в своем старушечьем наряде, на который он надел гусарский, подпоясанный плащ, стоял в середине своих саней, подобрав вожжи.
Было так светло, что он видел отблескивающие на месячном свете бляхи и глаза лошадей, испуганно оглядывавшихся на седоков, шумевших под темным навесом подъезда.
В сани Николая сели Наташа, Соня, m me Schoss и две девушки. В сани старого графа сели Диммлер с женой и Петя; в остальные расселись наряженные дворовые.
– Пошел вперед, Захар! – крикнул Николай кучеру отца, чтобы иметь случай перегнать его на дороге.
Тройка старого графа, в которую сел Диммлер и другие ряженые, визжа полозьями, как будто примерзая к снегу, и побрякивая густым колокольцом, тронулась вперед. Пристяжные жались на оглобли и увязали, выворачивая как сахар крепкий и блестящий снег.
Николай тронулся за первой тройкой; сзади зашумели и завизжали остальные. Сначала ехали маленькой рысью по узкой дороге. Пока ехали мимо сада, тени от оголенных деревьев ложились часто поперек дороги и скрывали яркий свет луны, но как только выехали за ограду, алмазно блестящая, с сизым отблеском, снежная равнина, вся облитая месячным сиянием и неподвижная, открылась со всех сторон. Раз, раз, толконул ухаб в передних санях; точно так же толконуло следующие сани и следующие и, дерзко нарушая закованную тишину, одни за другими стали растягиваться сани.
– След заячий, много следов! – прозвучал в морозном скованном воздухе голос Наташи.
– Как видно, Nicolas! – сказал голос Сони. – Николай оглянулся на Соню и пригнулся, чтоб ближе рассмотреть ее лицо. Какое то совсем новое, милое, лицо, с черными бровями и усами, в лунном свете, близко и далеко, выглядывало из соболей.
«Это прежде была Соня», подумал Николай. Он ближе вгляделся в нее и улыбнулся.
– Вы что, Nicolas?
– Ничего, – сказал он и повернулся опять к лошадям.
Выехав на торную, большую дорогу, примасленную полозьями и всю иссеченную следами шипов, видными в свете месяца, лошади сами собой стали натягивать вожжи и прибавлять ходу. Левая пристяжная, загнув голову, прыжками подергивала свои постромки. Коренной раскачивался, поводя ушами, как будто спрашивая: «начинать или рано еще?» – Впереди, уже далеко отделившись и звеня удаляющимся густым колокольцом, ясно виднелась на белом снегу черная тройка Захара. Слышны были из его саней покрикиванье и хохот и голоса наряженных.
– Ну ли вы, разлюбезные, – крикнул Николай, с одной стороны подергивая вожжу и отводя с кнутом pуку. И только по усилившемуся как будто на встречу ветру, и по подергиванью натягивающих и всё прибавляющих скоку пристяжных, заметно было, как шибко полетела тройка. Николай оглянулся назад. С криком и визгом, махая кнутами и заставляя скакать коренных, поспевали другие тройки. Коренной стойко поколыхивался под дугой, не думая сбивать и обещая еще и еще наддать, когда понадобится.
Николай догнал первую тройку. Они съехали с какой то горы, выехали на широко разъезженную дорогу по лугу около реки.
«Где это мы едем?» подумал Николай. – «По косому лугу должно быть. Но нет, это что то новое, чего я никогда не видал. Это не косой луг и не Дёмкина гора, а это Бог знает что такое! Это что то новое и волшебное. Ну, что бы там ни было!» И он, крикнув на лошадей, стал объезжать первую тройку.
Захар сдержал лошадей и обернул свое уже объиндевевшее до бровей лицо.
Николай пустил своих лошадей; Захар, вытянув вперед руки, чмокнул и пустил своих.
– Ну держись, барин, – проговорил он. – Еще быстрее рядом полетели тройки, и быстро переменялись ноги скачущих лошадей. Николай стал забирать вперед. Захар, не переменяя положения вытянутых рук, приподнял одну руку с вожжами.
– Врешь, барин, – прокричал он Николаю. Николай в скок пустил всех лошадей и перегнал Захара. Лошади засыпали мелким, сухим снегом лица седоков, рядом с ними звучали частые переборы и путались быстро движущиеся ноги, и тени перегоняемой тройки. Свист полозьев по снегу и женские взвизги слышались с разных сторон.
Опять остановив лошадей, Николай оглянулся кругом себя. Кругом была всё та же пропитанная насквозь лунным светом волшебная равнина с рассыпанными по ней звездами.
«Захар кричит, чтобы я взял налево; а зачем налево? думал Николай. Разве мы к Мелюковым едем, разве это Мелюковка? Мы Бог знает где едем, и Бог знает, что с нами делается – и очень странно и хорошо то, что с нами делается». Он оглянулся в сани.
– Посмотри, у него и усы и ресницы, всё белое, – сказал один из сидевших странных, хорошеньких и чужих людей с тонкими усами и бровями.
«Этот, кажется, была Наташа, подумал Николай, а эта m me Schoss; а может быть и нет, а это черкес с усами не знаю кто, но я люблю ее».
– Не холодно ли вам? – спросил он. Они не отвечали и засмеялись. Диммлер из задних саней что то кричал, вероятно смешное, но нельзя было расслышать, что он кричал.
– Да, да, – смеясь отвечали голоса.
– Однако вот какой то волшебный лес с переливающимися черными тенями и блестками алмазов и с какой то анфиладой мраморных ступеней, и какие то серебряные крыши волшебных зданий, и пронзительный визг каких то зверей. «А ежели и в самом деле это Мелюковка, то еще страннее то, что мы ехали Бог знает где, и приехали в Мелюковку», думал Николай.
Действительно это была Мелюковка, и на подъезд выбежали девки и лакеи со свечами и радостными лицами.
– Кто такой? – спрашивали с подъезда.
– Графские наряженные, по лошадям вижу, – отвечали голоса.

Пелагея Даниловна Мелюкова, широкая, энергическая женщина, в очках и распашном капоте, сидела в гостиной, окруженная дочерьми, которым она старалась не дать скучать. Они тихо лили воск и смотрели на тени выходивших фигур, когда зашумели в передней шаги и голоса приезжих.
Гусары, барыни, ведьмы, паясы, медведи, прокашливаясь и обтирая заиндевевшие от мороза лица в передней, вошли в залу, где поспешно зажигали свечи. Паяц – Диммлер с барыней – Николаем открыли пляску. Окруженные кричавшими детьми, ряженые, закрывая лица и меняя голоса, раскланивались перед хозяйкой и расстанавливались по комнате.
– Ах, узнать нельзя! А Наташа то! Посмотрите, на кого она похожа! Право, напоминает кого то. Эдуард то Карлыч как хорош! Я не узнала. Да как танцует! Ах, батюшки, и черкес какой то; право, как идет Сонюшке. Это еще кто? Ну, утешили! Столы то примите, Никита, Ваня. А мы так тихо сидели!
– Ха ха ха!… Гусар то, гусар то! Точно мальчик, и ноги!… Я видеть не могу… – слышались голоса.
Наташа, любимица молодых Мелюковых, с ними вместе исчезла в задние комнаты, куда была потребована пробка и разные халаты и мужские платья, которые в растворенную дверь принимали от лакея оголенные девичьи руки. Через десять минут вся молодежь семейства Мелюковых присоединилась к ряженым.
Пелагея Даниловна, распорядившись очисткой места для гостей и угощениями для господ и дворовых, не снимая очков, с сдерживаемой улыбкой, ходила между ряжеными, близко глядя им в лица и никого не узнавая. Она не узнавала не только Ростовых и Диммлера, но и никак не могла узнать ни своих дочерей, ни тех мужниных халатов и мундиров, которые были на них.
– А это чья такая? – говорила она, обращаясь к своей гувернантке и глядя в лицо своей дочери, представлявшей казанского татарина. – Кажется, из Ростовых кто то. Ну и вы, господин гусар, в каком полку служите? – спрашивала она Наташу. – Турке то, турке пастилы подай, – говорила она обносившему буфетчику: – это их законом не запрещено.
Иногда, глядя на странные, но смешные па, которые выделывали танцующие, решившие раз навсегда, что они наряженные, что никто их не узнает и потому не конфузившиеся, – Пелагея Даниловна закрывалась платком, и всё тучное тело ее тряслось от неудержимого доброго, старушечьего смеха. – Сашинет то моя, Сашинет то! – говорила она.
После русских плясок и хороводов Пелагея Даниловна соединила всех дворовых и господ вместе, в один большой круг; принесли кольцо, веревочку и рублик, и устроились общие игры.
Через час все костюмы измялись и расстроились. Пробочные усы и брови размазались по вспотевшим, разгоревшимся и веселым лицам. Пелагея Даниловна стала узнавать ряженых, восхищалась тем, как хорошо были сделаны костюмы, как шли они особенно к барышням, и благодарила всех за то, что так повеселили ее. Гостей позвали ужинать в гостиную, а в зале распорядились угощением дворовых.
– Нет, в бане гадать, вот это страшно! – говорила за ужином старая девушка, жившая у Мелюковых.
– Отчего же? – спросила старшая дочь Мелюковых.
– Да не пойдете, тут надо храбрость…
– Я пойду, – сказала Соня.
– Расскажите, как это было с барышней? – сказала вторая Мелюкова.
– Да вот так то, пошла одна барышня, – сказала старая девушка, – взяла петуха, два прибора – как следует, села. Посидела, только слышит, вдруг едет… с колокольцами, с бубенцами подъехали сани; слышит, идет. Входит совсем в образе человеческом, как есть офицер, пришел и сел с ней за прибор.
– А! А!… – закричала Наташа, с ужасом выкатывая глаза.
– Да как же, он так и говорит?
– Да, как человек, всё как должно быть, и стал, и стал уговаривать, а ей бы надо занять его разговором до петухов; а она заробела; – только заробела и закрылась руками. Он ее и подхватил. Хорошо, что тут девушки прибежали…
– Ну, что пугать их! – сказала Пелагея Даниловна.
– Мамаша, ведь вы сами гадали… – сказала дочь.
– А как это в амбаре гадают? – спросила Соня.
– Да вот хоть бы теперь, пойдут к амбару, да и слушают. Что услышите: заколачивает, стучит – дурно, а пересыпает хлеб – это к добру; а то бывает…
– Мама расскажите, что с вами было в амбаре?
Пелагея Даниловна улыбнулась.
– Да что, я уж забыла… – сказала она. – Ведь вы никто не пойдете?
– Нет, я пойду; Пепагея Даниловна, пустите меня, я пойду, – сказала Соня.
– Ну что ж, коли не боишься.
– Луиза Ивановна, можно мне? – спросила Соня.
Играли ли в колечко, в веревочку или рублик, разговаривали ли, как теперь, Николай не отходил от Сони и совсем новыми глазами смотрел на нее. Ему казалось, что он нынче только в первый раз, благодаря этим пробочным усам, вполне узнал ее. Соня действительно этот вечер была весела, оживлена и хороша, какой никогда еще не видал ее Николай.
«Так вот она какая, а я то дурак!» думал он, глядя на ее блестящие глаза и счастливую, восторженную, из под усов делающую ямочки на щеках, улыбку, которой он не видал прежде.
– Я ничего не боюсь, – сказала Соня. – Можно сейчас? – Она встала. Соне рассказали, где амбар, как ей молча стоять и слушать, и подали ей шубку. Она накинула ее себе на голову и взглянула на Николая.
«Что за прелесть эта девочка!» подумал он. «И об чем я думал до сих пор!»
Соня вышла в коридор, чтобы итти в амбар. Николай поспешно пошел на парадное крыльцо, говоря, что ему жарко. Действительно в доме было душно от столпившегося народа.
На дворе был тот же неподвижный холод, тот же месяц, только было еще светлее. Свет был так силен и звезд на снеге было так много, что на небо не хотелось смотреть, и настоящих звезд было незаметно. На небе было черно и скучно, на земле было весело.
«Дурак я, дурак! Чего ждал до сих пор?» подумал Николай и, сбежав на крыльцо, он обошел угол дома по той тропинке, которая вела к заднему крыльцу. Он знал, что здесь пойдет Соня. На половине дороги стояли сложенные сажени дров, на них был снег, от них падала тень; через них и с боку их, переплетаясь, падали тени старых голых лип на снег и дорожку. Дорожка вела к амбару. Рубленная стена амбара и крыша, покрытая снегом, как высеченная из какого то драгоценного камня, блестели в месячном свете. В саду треснуло дерево, и опять всё совершенно затихло. Грудь, казалось, дышала не воздухом, а какой то вечно молодой силой и радостью.
С девичьего крыльца застучали ноги по ступенькам, скрыпнуло звонко на последней, на которую был нанесен снег, и голос старой девушки сказал:
– Прямо, прямо, вот по дорожке, барышня. Только не оглядываться.
– Я не боюсь, – отвечал голос Сони, и по дорожке, по направлению к Николаю, завизжали, засвистели в тоненьких башмачках ножки Сони.
Соня шла закутавшись в шубку. Она была уже в двух шагах, когда увидала его; она увидала его тоже не таким, каким она знала и какого всегда немножко боялась. Он был в женском платье со спутанными волосами и с счастливой и новой для Сони улыбкой. Соня быстро подбежала к нему.
«Совсем другая, и всё та же», думал Николай, глядя на ее лицо, всё освещенное лунным светом. Он продел руки под шубку, прикрывавшую ее голову, обнял, прижал к себе и поцеловал в губы, над которыми были усы и от которых пахло жженой пробкой. Соня в самую середину губ поцеловала его и, выпростав маленькие руки, с обеих сторон взяла его за щеки.
– Соня!… Nicolas!… – только сказали они. Они подбежали к амбару и вернулись назад каждый с своего крыльца.

Когда все поехали назад от Пелагеи Даниловны, Наташа, всегда всё видевшая и замечавшая, устроила так размещение, что Луиза Ивановна и она сели в сани с Диммлером, а Соня села с Николаем и девушками.
Николай, уже не перегоняясь, ровно ехал в обратный путь, и всё вглядываясь в этом странном, лунном свете в Соню, отыскивал при этом всё переменяющем свете, из под бровей и усов свою ту прежнюю и теперешнюю Соню, с которой он решил уже никогда не разлучаться. Он вглядывался, и когда узнавал всё ту же и другую и вспоминал, слышав этот запах пробки, смешанный с чувством поцелуя, он полной грудью вдыхал в себя морозный воздух и, глядя на уходящую землю и блестящее небо, он чувствовал себя опять в волшебном царстве.
– Соня, тебе хорошо? – изредка спрашивал он.
– Да, – отвечала Соня. – А тебе?
На середине дороги Николай дал подержать лошадей кучеру, на минутку подбежал к саням Наташи и стал на отвод.
– Наташа, – сказал он ей шопотом по французски, – знаешь, я решился насчет Сони.
– Ты ей сказал? – спросила Наташа, вся вдруг просияв от радости.
– Ах, какая ты странная с этими усами и бровями, Наташа! Ты рада?
– Я так рада, так рада! Я уж сердилась на тебя. Я тебе не говорила, но ты дурно с ней поступал. Это такое сердце, Nicolas. Как я рада! Я бываю гадкая, но мне совестно было быть одной счастливой без Сони, – продолжала Наташа. – Теперь я так рада, ну, беги к ней.
– Нет, постой, ах какая ты смешная! – сказал Николай, всё всматриваясь в нее, и в сестре тоже находя что то новое, необыкновенное и обворожительно нежное, чего он прежде не видал в ней. – Наташа, что то волшебное. А?
– Да, – отвечала она, – ты прекрасно сделал.
«Если б я прежде видел ее такою, какою она теперь, – думал Николай, – я бы давно спросил, что сделать и сделал бы всё, что бы она ни велела, и всё бы было хорошо».
– Так ты рада, и я хорошо сделал?
– Ах, так хорошо! Я недавно с мамашей поссорилась за это. Мама сказала, что она тебя ловит. Как это можно говорить? Я с мама чуть не побранилась. И никому никогда не позволю ничего дурного про нее сказать и подумать, потому что в ней одно хорошее.
– Так хорошо? – сказал Николай, еще раз высматривая выражение лица сестры, чтобы узнать, правда ли это, и, скрыпя сапогами, он соскочил с отвода и побежал к своим саням. Всё тот же счастливый, улыбающийся черкес, с усиками и блестящими глазами, смотревший из под собольего капора, сидел там, и этот черкес был Соня, и эта Соня была наверное его будущая, счастливая и любящая жена.

российский физик, лауреат Нобелевской премии 2000 года. р. 1930

Жорес Иванович Алфёров родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм в белорусском городе Витебске. Имя получил в честь Жана Жореса, международного борца против войны, основателя газеты «Юманите». После 1935 года семейство переехало на Урал, где отец работал директором целлюлозно-бумажного завода. Там Жорес учился с пятого по восьмой класс. 9 мая 1945 года Иван Карпович Алфёров получил направление в Минск, где Жорес окончил среднюю школу с золотой медалью. По совету учителя физики поехал поступать в Ленинградский электротехнический институт им. В.И. Ульянова (Ленина), куда был принят без экзаменов. Он учился на факультете электронной техники.

Со студенческих лет Алфёров участвовал в научных исследованиях. На третьем курсе он пошел трудиться в вакуумную лабораторию профессора Б.П. Козырева. Там он начал экспериментальную работу под руководством Н.Н. Созиной. Так, в 1950 году полупроводники стали главным делом его жизни.

В 1953 году, после окончания ЛЭТИ, Алфёров был принят на работу в Физико-технический институт им. А.Ф. Иоффе. В первой половине 50-х годов перед институтом была поставлена проблема создать отечественные полупроводниковые приборы для внедрения в отечественную индустрию. Перед лабораторией, в которой Алфёров работал младшим научным сотрудником, стояла задача: приобретение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. Алфёров участвовал в разработке первых отечественных транзисторов и силовых германиевых приборов. За комплекс проведенных работ в 1959 году он получил первую правительственную награду, в 1961 году им была защищена кандидатская диссертация.

Будучи кандидатом физико-математических наук, Алфёров мог перейти к разработке собственной темы. В те годы была высказана мысль использования в полупроводниковой технике гетеропереходов. Создание совершенных структур на их основе могло привести к качественному скачку в физике и технике. Однако попытки реализовать приборы на гетеропереходах не давали практических результатов. Причина неудач крылась в трудности создания близкого к идеальному перехода, выявлении и получении необходимых гетеропар. Во многих журнальных публикациях и на различных научных конференциях неоднократно говорилось о бесперспективности проведения работ в этом направлении.

Алфёров продолжал технологические исследования. В основу их им были положены эпитаксиальные методы, позволяющие влиять на фундаментальные параметры полупроводника: ширина запрещенной зоны, размерность электронного сродства, эффективная масса носителей тока, показатель преломления внутри единого монокристалла. Ж.И. Алфёров с сотрудниками создали не только гетероструктуры, близкие по своим свойствам к идеальной модели, но полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило еще и кардинально улучшить параметры большинства известных полупроводниковых приборов и сформировать принципиально новые, в особенности перспективные для применения в оптической и квантовой электронике. Новый период исследований гетеропереходов в полупроводниках Жорес Иванович обобщил в докторской диссертации, которую защитил в 1970 году.

Работы Ж.И. Алфёрова были по заслугам оценены международной и отечественной наукой. В 1971 году Франклиновский институт (США) присуждает ему престижную медаль Баллантайна, называемую «малой Нобелевской премией» и учрежденную для награждения за лучшие работы в области физики. В 1972 году следует самая высокая награда СССР – Ленинская премия.

С использованием технологии Алфёрова в России (впервые в мире) было организовано изготовление гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

На основе работ Алфёрова и его сотрудников созданы полупроводниковые лазеры, работающие в широкой спектральной области. Они нашли широкое использование в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. В 1993–1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с широким диапазоном применения, известной ныне как «зонная инженерия».

В 1972 году Алфёров стал профессором, а через год – заведующим базовой кафедрой оптоэлектроники ЛЭТИ. С 1987 по май 2003 года – директор ФТИ им. А.Ф. Иоффе, с мая 2003 по июль 2006 года – научный руководитель. С момента основания в 1988 году декан физико-технического факультета СПбГПУ.

В 1990–1991 годах – вице-президент АН СССР, председатель Президиума Ленинградского научного центра. Академик АН СССР (1979 год), затем РАН, почётный академик Российской академии образования. Главный редактор «Писем в Журнал технической физики». Был главным редактором журнала «Физика и техника полупроводников».

10 октября 2000 года по всем программам российского телевидения сообщили о присуждении Ж.И. Алфёрову Нобелевской премии по физике за 2000 год за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники. Современные информационные системы должны отвечать двум основополагающим требованиям: быть скоростными, чтобы громадный объем информации можно было передать за короткий промежуток времени, и компактными, чтобы уместиться в офисе, дома, в портфеле или кармане. Своими открытиями Нобелевские лауреаты по физике за 2000 год создали основу таковой современной техники. Они открыли и развили быстрые опто– и микроэлектронные компоненты, которые создаются на базе многослойных полупроводниковых гетероструктур. На основе гетероструктур созданы мощные высокоэффективные светоизлучающие диоды, используемые в дисплеях, лампах тормозного освещения в автомобилях и светофорах. В гетероструктурных солнечных батареях, которые обширно используются в космической и наземной энергетике, достигнуты рекордные эффективности преобразования солнечной энергии в электрическую.

С 2003 года Алфёров председатель научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Часть своей Нобелевской премии Алфёров отдал на развитие научно-образовательного центра физико-технического института. «В центр приходят еще школьниками, учатся по углубленной программе, потом – институт, аспирантура, академическое образование, – рассказывает член президиума РАН, академик, директор Института радиотехники и электроники Юрий Гуляев. – Когда из страны валом начали уезжать ученые, а выпускники школ почти поголовно стали предпочитать бизнес образованию и науке – возникла страшная опасность, что знания старшего поколения ученых некому будет передать. Алфёров нашел выход и буквально совершил подвиг, создав эту своего рода теплицу для будущих ученых».

22 июля 2007 года было опубликовано «Письмо десяти академиков» («письмо десяти» или «письмо академиков») – открытое письмо десяти академиков РАН (Е. Александрова, Ж. Алфёрова, Г. Абелева, Л. Баркова, А. Воробьёва, В. Гинзбурга, С. Инге-Вечтомова, Э. Круглякова, М. Садовского, А. Черепащука) «Политика РПЦ МП: консолидация или развал страны?» Президенту России В. В. Путину. В письме выражена обеспокоенность «все возрастающей клерикализацией российского общества, активным проникновением церкви во все сферы общественной жизни», в частности в систему государственного образования. «Верить или не верить в Бога – дело совести и убеждений отдельного человека, – пишут академики. – Мы уважаем чувства верующих и не ставим своей целью борьбу с религией. Но мы не можем оставаться равнодушными, когда предпринимаются попытки подвергнуть сомнению научное Знание, вытравить из образования материалистическое видение мира, подменить знания, накопленные наукой, верой. Не следует забывать, что провозглашенный государством курс на инновационное развитие может быть осуществлён лишь в том случае, если школы и вузы вооружат молодых людей знаниями, добытыми современной наукой. Никакой альтернативы этим знаниям не существует».

Письмо вызвало огромную реакцию во всем обществе. Министр образования заявил: «Письмо академиков сыграло положительную роль, поскольку вызвало широкую общественную дискуссию, ряд представителей РПЦ придерживается такого же мнения». 13 сентября 2007 года президент России В.В. Путин заявил, что изучение в государственных школах предметов религиозной тематики нельзя делать обязательным, ибо это противоречит российской конституции.

В феврале 2008 года было опубликовано Открытое письмо представителей научной общественности к президенту РФ в связи с планами введения в школах курса «Основы православной культуры» (ОПК). К середине апреля письмо подписали более 1700 человек, из которых более 1100 имеют ученые степени (кандидаты и доктора наук). Позиция подписавшихся сводится к следующему: введение ОПК неизбежно приведет к конфликтам в школах на религиозной почве; для реализации «культурных прав» верующих нужно использовать не общеобразовательные, а уже имеющиеся в достаточных количествах воскресные школы; теология, она же богословие, не является научной дисциплиной.

С 2010 года – сопредседатель Консультативного научного Совета фонда «Сколково». Инновационный центр «Сколково» (российская «Кремниевая долина») – строящийся современный научно-технологический комплекс по разработке и коммерциализации новых технологий. В составе фонда «Сколково» существует пять кластеров, соответствующих пяти направлениям развития инновационных технологий: кластер биомедицинских технологий, кластер энергоэффективных технологий, кластер информационных и компьютерных технологий, кластер космических технологий и кластер ядерных технологий.

С 2011 – депутат Государственной думы Федерального собрания РФ 6 созыва от партии КПРФ.

Учредил Фонд поддержки образования и науки для поддержки талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

В своей книге «Физика и жизнь» Ж.И. Алфёров, в частности, пишет: «Все, что создано человечеством, создано благодаря науке. И если уж суждено нашей стране быть великой державой, то она ею будет не благодаря ядерному оружию или западным инвестициям, не благодаря вере в Бога или Президента, а благодаря труду ее народа, вере в знание, в науку, благодаря сохранению и развитию научного потенциала и образования».

Жорес Алферов - без преувеличения величайший из ныне живущих советских и российских физиков, единственный оставшийся в живых лауреат Нобелевской премии по физике, живущий в России, патриарх парламентской политики.

Семья

Жорес Алферов вырос в семье белоруса Ивана Карповича Алферова и еврейки Анны Владимировны Розенблюм. Старший брат Маркс Иванович Алферов погиб на фронте.

Жорес Алферов женат вторым браком на Тамаре Дарской. От этого брака у Алферова есть сын Иван. Также известно, что у Алферова есть дочь от первого брака, с которой он не поддерживает отношений, и приемная дочь Ирина - дочь второй супруги от первого брака.

Биография

Начало войны не позволило юному Жоресу Алферову отучиться в школе, и он продолжил учебу сразу после окончания войны в разрушенном Минске, в единственной работавшей русской мужской средней школе №42.

Окончив школу с золотой медалью, Жорес Алферов поехал в Ленинград и без вступительных экзаменов был зачислен на факультет электронной техники Ленинградского электротехнического института имени В.И. Ульянова (ЛЭТИ).

В 1950 году студент Жорес Алферов, специализировавшийся на электровакуумной технике, начал работать в вакуумной лаборатории профессора Б.П. Козырева.

В декабре 1952 года во время распределения студентов своей кафедре в ЛЭТИ Жорес Алферов выбрал Ленинградский физико-технический институт (ЛФТИ), которым руководил знаменитый Абрам Иоффе . В ЛФТИ Алферов стал младшим научным сотрудником и принимал участие в разработке первых отечественных транзисторов.

В 1959 году за работы по линии ВМФ СССР Жорес Алферов получил свою первую правительственную награду - "Знак почета".

В 1961 году Алферов защитил секретную диссертацию, посвященную разработке и исследованию мощных германиевых и кремниевых выпрямителей, и получил ученую степень кандидата технических наук.

В 1964 году Жорес Алферов стал старшим научным сотрудником Физтеха .

В 1963 году Алферов начал изучение полупроводниковых гетеропереходов. В 1970 году Алферов защитил докторскую диссертацию, обобщив новый этап исследований гетеропереходов в полупроводниках. Фактически, им был создано новое направление - физика гетероструктур.

В 1971 году Жорес Алферов был удостоен своей первой международной награды - медали Баллантайна, учрежденной Франклиновским институтом в Филадельфии. В 1972 году Алферов стал лауреатом Ленинской премии .

В 1972 году Алферов становится профессором, а через год - заведующим базовой кафедрой оптоэлектроники ЛЭТИ, открытой на факультете электронной техники Физтеха. В 1987 году Алферов возглавил Физтех, а в 1988 году параллельно стал деканом открытого им физико-технического факультета Ленинградского политехнического института (ЛПИ).

В 1990 году Алферов стал вице-президентом АН СССР.

10 октября 2000 года стало известно, что Жорес Алферову стал лауреатом Нобелевской премии по физике - за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники. Саму премию он разделил с двумя другими физиками - Кремером и Джеком Килби.

В 2001 году Алферов стал лауреатом Государственной премии РФ.

В 2003 году Алферов покинул пост главы Физтеха, оставшись научным руководителем института. 2005 году он стал председателем Санкт-Петербургского физико-технологического научно-образовательного центра РАН.

Жорес Алферов - признанный во всем мире ученый, создавший собственную научную школу и воспитавший сотни молодых ученых. Алферов является членом ряда научных организаций мира.

Политика

Жорес Алферов с 1944 года являлся членом ВЛКСМ , а с 1965 года - член КПСС . Алферов начал заниматься политикой в конце 80-х годов. С 1989 по 1992 год Алферов был народным депутатом СССР.

В 1995 году Жорес Алферов избрался депутатом Государственной думы второго созыва от движения "Наш дом - Россия" . В Госдуме Алферов возглавил подкомитет по науке Комитета по науке и образованию Госдумы.

Большую часть времени Алферов состоял во фракции "Наш дом - Россия", но в апреле 1999 года вошел в депутатскую группу "Народовластие".

В 1999 году Алферов вновь избрался депутатом Госдумы третьего, а затем в 2003 году - и четвертого созывов, проходя по партийным спискам КПРФ , не являясь членом партии. В Госдуме Алферов продолжал состоять в парламентском комитете по образованию и науке.

В 2001-2005 годах Алферов возглавлял президентскую комиссию по ввозу отработавшего ядерного топлива.

В 2007 году Алферов избрался депутатом Государственной думы пятого созыва от партии КПРФ, став старейшим депутатом нижней палаты. С 2011 года Алферов - депутат Государственной думы шестого созыва от партии КПРФ.

В 2013 году баллотировался на пост президента РАН и, получив 345 голосов, занял второе место.

В апреле 2015 года Жорес Алферов вернулся в состав Общественного совета при Министерстве образования и науки РФ . Алферов оставил пост председателя общественного совета при Минобре в марте 2013 года.

Ученый заявил, что причиной ухода стали разногласия с министром Ливановым по вопросу роли Российской академии наук. Он объяснял, что министр "совершенно иначе говорил о роли и значении РАН ". Также Нобелевский лауреат считал, что Ливанов либо не понимает традиций эффективного сотрудничества РАН и вузов, либо "сознательно пытается разорвать науку и образование ".

Доходы

Согласно декларации Жореса Алферова, в 2012 году он заработал 17 144 258,05 рублей. Он владеет двумя земельными участками площадью 12 500,00 кв. м, двумя квартирами площадью 216,30 кв. м, дачей площадью 165,80 кв. м и гаражом.

Слухи

После начавшейся в 2013 году реформы РАН Алферова называли главным ее противником. При этом сам Алферов так не подписал заявление ученых, вошедших в Клуб "1 июля" , его имени нет под Обращением российских ученых к высшим руководителям РФ.

В июле 2007 года Жорес Алферов стал одним из авторов обращения академиков РАН к президенту России Владимиру Путину , в котором ученые выступили против "возрастающей клерикализации российского общества": академики выступили против внесения специальности "теология" и против введения обязательного школьного предмета "Основы православной культуры".

Жорес Алферов – живая легенда отечественной науки. Ученый, открытия которого стали основой для создания современных электронных устройств. Наш мир уже невозможно представить без лазеров, полупроводников, светодиодов и оптоволоконных сетей. Все это стало доступно человечеству благодаря изобретениям Жореса Алферова и воспитанных им молодых ученых.

Заслуги российского (в прошлом – советского) физика высоко отмечены во всех уголках Земли и даже в космосе. Астероид (3884) Alferov носит имя лауреата Нобелевской премии, академика РАН и почетного члена международных научных сообществ.

Детство и юность

Детство ученого выпало на тяжелые годы. Мир сильно изменился с тех пор, как в семье коммунистов Ивана Карповича Алфёрова и Анны Владимировны Розенблюм родился младший сын. Старшего сына родители назвали Марксом (он погиб в последние дни Корсунь-Шевченковской битвы), а младший получил имя в честь Жана Жореса, вождя французских социалистов.

Семья Жореса Алферова: родители и брат

Родившийся 15 марта 1930 года в Витебске ребенок до войны успел исколесить вместе с родителями стройки Сталинграда, Новосибирска, Барнаула и Сясьстроя. Если бы семья Алферовых осталась жить в Белоруссии, то мировая наука могла бы понести огромную утрату, так и не узнав о нем. Национальность Анны Розенблюм стала бы причиной гибели и матери, и сына от рук нацистов.


Годы Второй мировой войны семья жила в Свердловской области, но нормально учиться в школе будущему ученому в это время не довелось. Однако по возвращении в Минск Жорес быстро наверстал упущенное время. Школу закончил с золотой медалью. Сейчас эта школа называется гимназией №42 и носит имя знаменитого ученика.

Учитель физики Яков Борисович Мельцерзон заметил способности юноши и рекомендовал поступать на энергетический факультет Белорусского Политеха. Определившись с кругом научных интересов, Алферов перевелся в ЛЭТИ. В 1952 году начал научную карьеру.

Наука

Выпускник мечтал работать в Физтехе под руководством Абрама Федоровича Иоффе. Физико-технический институт был в послевоенное время легендой. В шутку его именовали «детским садом Иоффе» - именно там росли молодые , и . Там Жорес Иванович стал частью команды, создавшей первые советские транзисторы.


Транзисторы стали темой для кандидатской диссертации молодого ученого. Впоследствии Жорес Иванович переключился на изучение гетероструктур (искусственных кристаллов) и движением в них света и других видов излучения. В его лаборатории работали с лазерами, уже в 1970 году там создали первые в мире солнечные батареи. Ими оснащали спутники, они снабжали электроэнергией орбитальную станцию «Мир».

Занятия прикладной наукой шли параллельно с преподавательской работой. Жорес Иванович писал книги и статьи. Руководил кафедрой оптоэлектроники и лично отбирал студентов. Увлеченные физикой школьники посещали его ежегодные курсы лекций «Физика и жизнь».


Сейчас при Академическом университете, бессменным ректором которого является Жорес Алферов, действует лицей «Физико-техническая школа». Лицей является нижней ступенью научно-образовательного учреждения, в который входит и мощный научно-исследовательский центр. Академик видит в лицеистах будущее российской науки.

«Будущее России - наука и технологии, а не распродажа сырья. И будущее страны не за олигархами, а за кем-то из моих учеников».

Эта цитата из публичного выступления Жореса Ивановича раскрывает веру ученого в победу пытливого разума над желанием обогащения.

Личная жизнь

Возможно, первым научным успехам ученого поспособствовала неудача в личной жизни. Первый брак Жореса Ивановича распался со скандалом. Красавица жена с помощью влиятельных грузинских родственников отсудила у мужа при разводе ленинградскую квартиру. В собственности Алферова остались лишь мотоцикл и раскладушка, на которой он ночевал в лаборатории. Разрыв отношений привел к полной потере отношений отца с дочерью.


Вторично ученый женился только в 1967 году, и этот брак выдержал испытание временем. Вместе с Тамарой Дарской Жорес воспитал ее дочь Ирину и общего сына Ивана. Рождение сына совпало с другим событием в биографии - получением Ленинской премии. Дети давно выросли, Жорес Иванович успел стать дедушкой. У него два внука и внучка.

Последние годы

Авторитет ученого в мировой науке опирается на более 500 научных работ и почти сотню изобретений. Но деятельность Нобелевского лауреата не ограничивалась физикой. Летом 2017 года в стенах Самарского университета академик прочитал открытую лекцию на тему: «Альберт Эйнштейн, социализм и современный мир», где раскрыл вопросы взаимодействия ученых и правителей.


В своих выступлениях ученый называл положение науки в России ужасающим и отстаивал права РАН на самоуправление и достойное финансирование. Ученый считал, что государство должно обеспечивать граждан бесплатной медициной, образованием и жильем, а в противном случае эта структура бесполезна.

Жорес Иванович принимал непосредственное участие в управлении государством. Еще в 1989 году его выбрали народным депутатом СССР от Академии Наук. С тех пор академик постоянно избирался в российскую Думу, активно отстаивая интересы ученых и простых граждан.


В августе 2017 года журнал Форбс включил Жореса Алферова в сотню самых влиятельных россиян последнего столетия. Несмотря на солидный возраст, нобелевский лауреат на видеозаписях и фото выглядел бодрым и уверенным в себе.

Смерть

2 марта 2019 года Жорес Алферов в возрасте 88 лет. Как рассказал журналистам главврач больницы Российской академии наук Олег Чагунава, причиной смерти нобелевского лауреата стала острая сердечно-легочная недостаточность. Накануне Алферов несколько месяцев наблюдался у медиков с жалобой на гипертонию.

Организацию похорон прославленного физика взяла на себя КПРФ.

Награды и достижения

  • 1959 - Орден «Знак Почёта»
  • 1971 - Медаль Стюарта Баллантайна (США)
  • 1972 - Ленинская премия
  • 1975 - Орден Трудового Красного Знамени
  • 1978 - Хьюллет-Паккардовская премия (Европейское физическое общество)
  • 1980 - Орден Октябрьской Революции
  • 1984 - Государственная премия СССР
  • 1986 - Орден Ленина
  • 1987 - Золотая медаль Генриха Велкера (Симпозиум по GaAs)
  • 1989 - Премия имени Карпинского (ФРГ)
  • 1993 - XLIX Менделеевский чтец
  • 1996 - Премия имени А. Ф. Иоффе (РАН)
  • 1998 - Почетный доктор СПбГУП
  • 1999 - Орден «За заслуги перед Отечеством» III степени
  • 1999 - Демидовская премия (Научный Демидовский фонд)
  • 1999 - Золотая медаль имени А. С. Попова (РАН)
  • 2000 - Нобелевская премия (Швеция)
  • 2000 - Орден «За заслуги перед Отечеством» II степени
  • 2000 - Премия Ника Холоньяка (Оптическое общество Америки)
  • 2001 - Орден Франциска Скорины (Беларусь)
  • 2001 - Премия Киото (Япония)
  • 2001 - Премия В. И. Вернадского (Украина)
  • 2001 - Премия «Российский Национальный Олимп». Титул «Человек-легенда»
  • 2002 - Государственная премия Российской Федерации
  • 2002 - Золотая медаль SPIE
  • 2002 - Награда «Золотая тарелка» (США)
  • 2003 - Орден князя Ярослава Мудрого V степени (Украина)
  • 2005 - Орден «За заслуги перед Отечеством» I степени
  • 2005 - Международная энергетическая премия «Глобальная энергия»
  • 2008 - Звание и медаль Почётного профессора МФТИ
  • 2009 - Орден Дружбы народов (Беларусь)
  • 2010 - Орден «За заслуги перед Отечеством» IV степени
  • 2010 - Медаль «За вклад в развитие нанонауки и нанотехнологий» от ЮНЕСКО
  • 2011 - Звание «Почётный доктор Российско-Армянского (Славянского) университета»
  • 2013 - Международная премия Карла Боэра
  • 2015 - Орден Александра Невского
  • 2015 - Золотая медаль имени Низами Гянджеви (Азербайджан)
  • 2015 - Звание «Почётный профессор МИЭТ»

В марте этого года академику Жоресу Ивановичу Алфёрову, нобелевскому лауреату и члену редколлегии журнала «Экология и жизнь», исполнилось 80 лет. А в апреле пришло известие о том, что Жореса Ивановича назначают научным руководителем инновационного проекта «Сколково». Этот важный проект должен, по сути, создать прорыв в будущее, вдохнув новую жизнь в отечественную электронику, у истоков развития которой и стоял Ж. И. Алфёров.

В пользу того, что прорыв возможен, говорит история: когда в 1957 г. в СССР был запущен первый спутник, США оказались в положении аутсайдера. Однако американское правительство проявило бойцовский характер, были брошены такие ассигнования в технологию, что число исследователей быстро достигло миллиона! Буквально на следующий год (1958) один из них, Джон Килби, изобрел интегральную схему, заменившую печатную плату в обычных ЭВМ - и родилась микроэлектроника современных компьютеров. Эта история впоследствии получила название «эффект спутника».

Жорес Иванович очень внимательно относится к воспитанию будущих исследователей, недаром он основал НОЦ - учебный центр, где подготовка ведется со школьной скамьи. Поздравляя Жореса Ивановича с юбилеем, заглянем в прошлое и будущее электроники, где эффект спутника должен не раз проявиться вновь. Хочется надеяться, что и в будущем нашей страны, как когда-то в США, будет накоплена «критическая масса» подготовленных исследователей - для возникновения эффекта спутника.

«Технический» свет

Первым шагом к созданию микроэлектроники был транзистор. Пионерами транзисторной эры стали Уильям Шокли, Джон Бардин и Уолтер Браттейн, которые в 1947 г. в «Bell Labs » впервые создали действующий биполярный транзистор. А второй компонентой полупроводниковой электроники стал прибор для прямого преобразования электричества в свет - это полупроводниковый оптоэлектронный преобразователь, к созданию которого Ж. И. Алфёров имел непосредственное отношение.

Задача прямого преобразования электричества в «технический» свет - когерентное квантовое излучение - оформилась как направление квантовой электроники, родившейся в 1953–1955 гг. По сути, ученые поставили и решили задачу получения совершенного нового вида света, которого раньше не было в природе. Это не тот свет, который льется непрерывным потоком при прохождении тока по вольфрамовой нити или приходит в течение дня от Солнца и состоит из случайной смеси волн разной длины, не согласованных по фазе. Другими словами, был создан свет строго «дозированный», полученный как набор из определенного числа квантов с заданной длиной волны и строго «построенный» - когерентный, т. е. упорядоченный, что означает одновременность (синфазость) излучения квантов.

Приоритет США по транзистору был определен огромной ношей Отечественной войны, навалившейся на нашу страну. На этой войне погиб старший брат Жореса Ивановича, Маркс Иванович.

Маркс Алфёров окончил школу 21 июня 1941 г. в Сясьстрое. Поступил в Уральский индустриальный институт на энергетический факультет, но проучился лишь несколько недель, а потом решил, что его долг - защищать Родину. Сталинград, Харьков, Курская дуга, тяжелое ранение в голову. В октябре 1943 г. он провел три дня с семьей в Свердловске, когда после госпиталя возвращался на фронт.

Три дня, проведенные с братом, его фронтовые рассказы и страстную юношескую веру в силу науки и инженерной мысли 13-летний Жорес запомнил на всю жизнь. Гвардии младший лейтенант Маркс Иванович Алфёров погиб в бою во «втором Сталинграде» - так называли тогда Корсунь-Шевченковскую операцию.

В 1956 г. Жорес Алфёров приехал на Украину, чтобы найти могилу брата. В Киеве, на улице, он неожиданно встретил своего сослуживца Б. П. Захарченю, ставшего впоследствии одним из ближайших его друзей. Договорились поехать вместе. Купили билеты на пароход и уже на следующий день плыли вниз по Днепру к Каневу в двухместной каюте. Нашли деревню Хильки, около которой советские солдаты, в числе которых был и Маркс Алфёров, отражали яростную попытку отборных немецких дивизий выйти из корсунь-шевченковского «котла». Нашли братскую могилу с белым гипсовым солдатом на постаменте, высящемся над буйно разросшейся травой, в которую были вкраплены простые цветы, какие обычно сажают на русских могилах: ноготки, анютины глазки, незабудки.

К 1956 г. Жорес Алфёров уже работал в Ленинградском физико-техническом институте, куда он мечтал попасть еще во время учебы. Большую роль в этом сыграла книга «Основные представления современной физики», написанная Абрамом Федоровичем Иоффе - патриархом отечественной физики, из школы которого вышли практически все физики, составившие впоследствии гордость отечественной физической школы: П. Л. Капица, Л. Д. Ландау, И. В. Курчатов, А. П. Александров, Ю. Б. Харитон и многие другие. Жорес Иванович много позже писал, что его счастливая жизнь в науке была предопределена его распределением в Физтех, впоследствии получивший имя Иоффе.

Систематические исследования полупроводников в Физико-техническом институте были начаты еще в 30-е годы прошлого века. В 1932 г. В. П. Жузе и Б. В. Курчатов исследовали собственную и примесную проводимость полупроводников. В том же году А. Ф. Иоффе и Я. И. Френкель создали теорию выпрямления тока на контакте металл-полупроводник, основанную на явлении туннелирования. В 1931 и 1936 г. Я. И. Френкель опубликовал свои знаменитые работы, в которых предсказал существование экситонов в полупроводниках, введя этот термин и разработав теорию экситонов. Теория выпрямляющего р–n-перехода, легшая в основу р–n-перехода В. Шокли, создавшего первый транзистор, была опубликована Б. И. Давыдовым, сотрудником Физтеха, в 1939 г. Нина Горюнова, аспирантка Иоффе, защитившая в 1950 г. диссертацию по интерметаллическим соединениям, открыла полупроводниковые свойства соединений 3-й и 5-й групп периодической системы (далее А 3 В 5). Именно она создала фундамент, на котором начались исследования гетероструктур этих элементов. (На Западе отцом полупроводников А 3 В 5 считается Г. Велькер.)

Самому Алфёрову поработать под руководством Иоффе не довелось - в декабре 1950 г., во время кампании по «борьбе с космополитизмом», Иоффе был снят с поста директора и выведен из состава Ученого совета института. В 1952 г. он возглавил лабораторию полупроводников, на базе которой в 1954 г. был организован Институт полупроводников АН СССР.

Заявку на изобретение полупроводникового лазера Алфёров подал совместно с теоретиком Р. И. Казариновым в разгар поисков полупроводникового лазера. Эти поиски шли с 1961 г., когда Н. Г. Басов, О. Н. Крохин и Ю. М. Попов сформулировали теоретические предпосылки его создания. В июле 1962 г. американцы определились с полупроводником для генерации - это был арсенид галлия, а в сентябре-октябре лазерный эффект получили сразу в трех лабораториях, первой оказалась группа Роберта Холла (24 сентября 1962 г.). И через пять месяцев после публикации Холла была подана заявка на изобретение Алфёрова и Казаринова, от которой ведется отсчет занятиям гетероструктурной микроэлектроникой в Физтехе.

Группа Алфёрова (Дмитрий Третьяков, Дмитрий Гарбузов, Ефим Портной, Владимир Корольков и Вячеслав Андреев) несколько лет билась над поиском подходящего для реализации материала, пытаясь изготовить его самостоятельно, но нашла подходящий сложный трехкомпонентный полупроводник почти случайно: в соседней лаборатории Н. А. Горюновой. Однако это была «неслучайная» случайность - поиск перспективных полупроводниковых соединений Нина Александровна Горюнова вела направленно, а в вышедшей в 1968 г. монографии сформулировала идею «периодической системы полупроводниковых соединений». Полупроводниковое соединение, созданное в ее лаборатории, обладало необходимой для генерации стабильностью, что определило успех «предприятия». Гетеролазер на этом материале был создан в канун 1969 г., а приоритетной датой на уровне обнаружения лазерного эффекта является 13 сентября 1967 г.

Новые материалы

На фоне развернувшейся с начала 60-х годов лазерной гонки почти незаметно возникли светодиоды, которые тоже производили свет заданного спектра, но не обладающий строгой когерентностью лазера. В результате сегодняшняя микроэлектроника включает такие основные функциональные приборы, как транзисторы и их конгломераты - интегральные микросхемы (тысячи транзисторов) и микропроцессоры (от десятков тысяч до десятков миллионов транзисторов), тогда как по сути отдельную ветвь микроэлектроники - оптоэлектронику - составили приборы, построенные на основе гетероструктур по созданию «технического» света - полупроводниковые лазеры и светодиоды. С использованием полупроводниковых лазеров связана новейшая история цифровой записи - от обычных CD-дисков до знаменитой сегодня технологии Blue Ray на нитриде галлия (GaN).

Светодиод, или светоизлучающий диод (СД, СИД, LED - англ. Light-emitting diode ), - полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 г. в Университете Иллинойса группой, которой руководил Ник Холоньяк. Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Поэтому в ход пошли такие материалы, как GaAs, InP, InAs, InSb, являющиеся прямозонными полупроводниками. В то же время многие полупроводниковые материалы типа А 3 В Е образуют между собой непрерывный ряд твердых растворов - тройных и более сложных (AI x Ga 1- x N и In x Ga 1- x N, GaAs x P 1- x , Ga x In 1- x P, Ga x In 1- x As y P 1- y и т. п.), на основе которых и сформировалось направление гетероструктурной микроэлектроники.

Наиболее известное применение светодиодов сегодня - замена ламп накаливания и дисплеев мобильных телефонов и навигаторов.

Общая идея дальнейшего развития «технического света» - создание новых материалов для светодиодной и лазерной техники. Эта задача неразрывна с проблемой получения материалов с определенными требованиями, предъявляемыми к электронной структуре полупроводника. И главным из этих требований является строение запрещенной зоны полупроводниковой матрицы, используемой для решения той или иной конкретной задачи. Активно ведутся исследования сочетаний материалов, которые позволяют достигать заданных требований к форме и размерам запрещенной зоны.

Составить представление о многосторонности этой работы можно, взглянув на график, по которому можно оценить многообразие «базовых» двойных соединений и возможности их сочетаний в композиционных гетероструктурах.

Принимаем тысячи солнц!

История технического света была бы неполна, если бы наряду с излучателями света не шла разработка его приемников. Если работы группы Алфёрова начались с поисков материала для излучателей, то сегодня один из членов этой группы, ближайший сотрудник Алфёрова и его давний друг профессор В. М. Андреев вплотную занимается работой, связанной с обратным превращением света, причем именно тем превращением, которое используется в солнечных элементах. Идеология гетероструктур как комплекса материалов с заданной шириной запрещенной зоны нашла активное применение и здесь. Дело в том, что солнечный свет состоит из большого количества световых волн различной частоты, в чем как раз и состоит проблема его полного использования, так как материала, который смог бы одинаково преобразовывать свет различной частоты в электрическую энергию, не существует. Получается, что любая кремниевая солнечная батарея преобразует не весь спектр солнечного излучения, а только его часть. Что делать? «Рецепт» обманчиво прост: изготовить слоеный пирог из различных материалов, каждый слой которого реагирует на свою частоту, но в то же время пропускает все остальные частоты без значимого ослабления.

Это дорогая структура, так как в ней должны быть не только переходы различной проводимости, на которые падает свет, но и множество вспомогательных слоев, например, для того чтобы получаемую ЭДС можно было снять для дальнейшего использования. По сути, «сэндвич»-сборка из нескольких электронных приборов. Использование ее оправдано более высоким КПД «сэндвичей», который эффективно использовать вкупе с солнечным концентратором (линзой или зеркалом). Если «сэндвич» позволяет поднять КПД по сравнению с кремниевым элементом, например, в 2 раза-с 17 до 34%, то за счет концентратора, увеличивающего плотность солнечного излучения в 500 раз (500 солнц), можно получить выигрыш в 2 × 500 = 1000 раз! Это выигрыш в площади самого элемента, т. е. материала надо в 1000 раз меньше. Современные концентраторы солнечного излучения измеряют плотность излучения в тысячах и десятках тысяч «солнц», сконцентрированных на одном элементе.

Другой из возможных способов - получение материала, который может работать хотя бы на двух частотах или, точнее, с более широким диапазоном солнечного спектра. В начале 1960-х была показана возможность «мультизонного» фотоэффекта. Это своеобразная ситуация, когда наличие примесей создает полосы в запрещенной зоне полупроводника, что позволяет электронам и дыркам «прыгать через пропасть» в два или даже в три прыжка. В результате можно получить фотоэффект для фотонов с частотой 0,7, 1,8 или 2,6 эВ, что, конечно, значительно расширяет спектр поглощения и увеличивает КПД. Если ученым удастся обеспечить генерацию без существенной рекомбинации носителей на тех же примесных полосах, то КПД таких элементов может достигать 57%.

С начала 2000-х в этом направлении ведутся активные исследования под руководством В. М. Андреева и Ж. И. Алфёрова.

Есть еще интересное направление: поток солнечного света сначала расщепляется на потоки различных диапазонов частот, каждый из которых затем направляется на «свои» ячейки. Такое направление тоже может считаться перспективным, так как при этом исчезает последовательное соединение, неизбежное в «сэндвич»-структурах типа изображенной выше, лимитирующее ток элемента наиболее «слабым» (в это время дня и на данном материале) участком спектра.

Принципиальную важность имеет оценка соотношения солнечной и атомной энергетики, высказанная Ж. И. Алфёровым на одной из недавних конференций: «Если бы на развитие альтернативных источников энергии было затрачено только 15% средств, брошенных на развитие атомной энергетики, то АЭС для производства электроэнергии в СССР вообще не потребовались бы!»

Будущее гетероструктур и новые технологии

Интересна и другая оценка, отражающая точку зрения Жореса Ивановича: в XXI веке гетероструктуры оставят только 1% для использования моноструктур, т. е. вся электроника уйдет от таких «простых» веществ, как кремний с чистотой 99,99–99,999%. Цифры - это чистота кремния, измеряемая в девятках после запятой, но этой чистотой уже лет 40 как никого не удивить. Будущее электроники, полагает Алфёров, - это соединения из элементов A 3 B 5 , их твердых растворов и эпитаксиальных слоев различных сочетаний этих элементов. Конечно, нельзя утверждать, что простые полупроводники типа кремния не могут найти широкого применения, но все же сложные структуры дают значительно более гибкий ответ на запросы современности. Уже сегодня гетероструктуры решают проблему высокой плотности информации для оптических систем связи. Речь идет об OEIC (optoelectronic integrated circuit ) - оптоэлектронной интегральной схеме. Основу любой оптоэлектронной интегральной микросхемы (оптопары, оптрона) составляют инфракрасный излучающий диод и оптически согласованный с ним приемник излучения, что дает простор формальной схемотехнике для широкого использования этих устройств в качестве приемо-передатчиков информации.

Кроме того, ключевой прибор современной оптоэлектроники - ДГС-лазер (ДГС - двойная гетероструктура) - продолжает совершенствоваться и развиваться. Наконец, сегодня именно высокоэффективные быстродействующие светодиоды на гетероструктурах обеспечивают поддержку технологии высокоскоростной передачи данных HSPD (High Speed Packet Data service ).

Но самое главное в выводе Алфёрова не эти разрозненные применения, а общее направление развития техники XXI века - получение материалов и интегральных схем на основе материалов, обладающих точно заданными, рассчитанными на много ходов вперед свойствами. Эти свойства задаются путем конструкторской работы, которая ведется на уровне атомной структуры материала, определяемой поведением носителей заряда в том особом регулярном пространстве, которое представляет собой внутренность кристаллической решетки материала. По сути эта работа - регулирование числа электронов и их квантовых переходов - ювелирная работа на уровне конструирования постоянной кристаллической решетки, составляющей величины нескольких ангстрем (ангстрем - 10 –10 м, 1 нанометр = 10 ангстрем). Но сегодня развитие науки и техники - это уже не тот путь вглубь вещества, каким он представлялся в 60-е годы прошлого века. Сегодня во многом это движение в обратном направлении, в область наноразмеров - например, создание нанообластей со свойствами квантовых точек или квантовых проволок, где квантовые точки линейно связаны.

Естественно, нанообъекты - лишь один из этапов, которые проходят в своем развитии наука и техника, и на нем они не остановятся. Надо сказать, что развитие науки и техники путь далеко не прямолинейный, и если сегодня интересы исследователей сместились в сторону увеличения размеров - в нанообласть, то завтрашние решения будут конкурировать в разных масштабах.

Например, возникшие на кремниевых чипах ограничения по дальнейшему увеличению плотности элементов микросхем можно решить двумя путями. Первый путь - смена полупроводника. Для этого предложен вариант изготовления гибридных микросхем, основанных на применении двух полупроводниковых материалов с различными характеристиками. В качестве наиболее перспективного варианта называется использование нитрида галлия совместно с кремниевой пластиной. С одной стороны, нитрид галлия обладает уникальными электронными свойствами, позволяющими создавать высокоскоростные интегральные микросхемы, с другой - использование кремния как основы делает такую технологию совместимой с современным производственным оборудованием. Однако подход со стороны наноматериалов содержит еще более новаторскую идею электроники одного электрона - одноэлектроники.

Дело в том, что дальнейшую миниатюризацию электроники - размещение тысяч транзисторов на подложке одного микропроцессора - ограничивает пересечение электрических полей при движении потоков электронов в расположенных рядом транзисторах. Идея в том, чтобы вместо потоков электронов использовать один-единственный электрон, который может двигаться в «индивидуальном» временном графике и поэтому не создает «очередей», снижая тем самым напряженность помех.

Если разобраться, то потоки электронов в общем-то и не нужны - для передачи управления можно подать как угодно малый сигнал, проблема заключается в том, чтобы его уверенно выделить (детектировать). И оказывается, что одноэлектронное детектирование технически вполне осуществимо - для этого используется туннельный эффект, который является для каждого электрона индивидуальным событием, в отличие от обычного движения электронов «в общей массе» - ток в полупроводнике является коллективным процессом. С точки зрения электроники туннельный переход - это перенос заряда сквозь конденсатор, поэтому в полевом транзисторе, где конденсатор стоит на входе, одиночный электрон можно «поймать» по частоте колебаний усиливаемого сигнала. Однако выделить этот сигнал в обычных устройствах удавалось только при криогенных температурах - повышение температуры разрушало условия детектирования сигнала. Но температура исчезновения эффекта оказалась обратно пропорциональной площади контакта, и в 2001 г. удалось сделать первый одноэлектронный транзистор на нанотрубке, в котором площадь контакта была так мала, что позволяла работать при комнатных температурах!

В этом отношении одноэлектроника повторяет путь, который прошли исследователи полупроводниковых гетеролазеров - группа Алфёрова билась как раз над тем, чтобы найти материал, который обеспечит эффект лазерной генерации при комнатной температуре, а не при температуре жидкого азота. А вот сверхпроводники, с которыми связаны самые большие надежды по передаче больших потоков электронов (силовых токов), пока не удается «вытащить» из области криогенных температур. Это не только существенно тормозит возможности снижения потерь при передаче энергии на большие расстояния - хорошо известно, что перенаправление потоков энергии по территории России в течение суток приводит к 30%-ным потерям на «нагрев проводов», - отсутствие «комнатных» сверхпроводников ограничивает развитие хранения энергии в сверхпроводящих кольцах, где движение тока может продолжаться практически вечно. Недостижимым пока идеалом создания таких колец служат обычные атомы, где движение электронов вокруг ядра порой устойчиво при самых высоких температурах и может продолжаться неограниченно долго.

Дальнейшие перспективы развития наук о материалах весьма разнообразны. Причем именно с развитием науки о материалах появилась реальная возможность прямого использования солнечной энергии, сулящая огромные перспективы возобновляемой энергетике. Порой именно такие направления работы определяют будущее лицо общества (в Татарии и Чувашии уже планируют «зеленую революцию» и всерьез разрабатывают создание биоэкоградов). Возможно, будущее этого направления состоит в том, чтобы от развития техники материалов шагнуть к пониманию принципов функционирования самой природы, встать на путь использования управляемого фотосинтеза, который может быть распространен в человеческом обществе так же широко, как и в живой природе. Речь уже идет об элементарной ячейке живой природы - клетке, и это следующий, более высокий этап развития после электроники с ее идеологией создания приборов для выполнения какой-то одной функции - транзистора для управления током, светодиода или лазера для управления светом. Идеология клетки - это идеология операторов как элементарных устройств, осуществляющих некий цикл. Клетка служит не изолированным элементом для выполнения какой-то одной функции за счет внешней энергии, но целой фабрикой по переработке доступной внешней энергии в работу поддержания циклов множества различных процессов под единой оболочкой. Работа клетки по поддержанию собственного гомеостазиса и накопления в ней энергии в виде АТФ - захватывающая проблема современной науки. Пока биотехнологи могут лишь мечтать о создании искусственного устройства со свойствами клетки, пригодного для использования в микроэлектронике. И когда это произойдет, несомненно, начнется новая эра микроэлектроники - эра приближения к принципам работы живых организмов, давняя мечта фантастов и давно придуманной науки бионики, все еще не вышедшей из колыбели биофизики.

Будем надеяться, что создание научного центра инноваций в Сколково сумеет реализовать нечто подобное «эффекту спутника» - открыть новые прорывные области, создать новые материалы и технологии электроники.

Пожелаем успеха Жоресу Ивановичу Алфёрову на посту научного руководителя этого нового научно-технологического агломерата. Хочется надеяться, что его энергия и настойчивость будут залогом успеха этого предприятия.

Запрещенная зона - область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Характерные значения ширины запрещенной зоны в полупроводниках составляют 0,1–4 эВ. Примеси могут создать полосы в запрещенной зоне - возникает мультизона.