Лабильность, парабиоз и его фазы (Н.Е.Введенский). Методы исследования желез внутренней секреции - реферат Строение натриевых каналов

Многие физиологические состояния человека и животных, такие как развитие сна, гипнотические состояния, можно объяснить с позиций парабиоза. Помимо этого, функциональное значение парабиоза определяется механизмом действия некоторых лекарственных средств. Так в основе дейcтвия местных анастетиков (новокаин, лидокаин и др), анальгетиков, средств для ингаляционнго наркоза лежит данное явление.

Местные анестетики (от греч. an – отрицание, aesthesis – чувствительность) обратимо снижают возбудимость чувствительных нервных окончаний и блокируют проведение импульса в нервных проводниках в месте непосредственного применения. Эти вещества используются для устранения боли. Впервые препарат из этой группы кокаин был выделен в 1860 году Альбертом Ниманом из листьев южноамериканского кустарника Erythroxylon coca. В 1879 году В.К. Анреп профессор военно-медицинской Академии С.-Петербурга подтвердил способность кокаина вызывать анестезию. В 1905 году Э. Эйндхорн синтезировал и применил для местной анестезии новокаин. С 1948 года используется лидокаин.

Местные анестетики состоят из гидрофильной и липофильной части, которые соединяются эфирной или алкидной связями. Биологически (физиологически) активной частью является липофильная структура, образующая ароматическое кольцо.

В основе механизма действия местных анестетиков лежит нарушение проницаемости быстрых потенциалозависимых натриевых каналов. Эти вещества связываются с открытыми натриевыми каналами во время потенциала действия и вызывают их инактивацию. Местные анестетики не взаимодействуют с закрытыми каналами в период потенциала покоя и каналами, находящимися в инактивированном состоянии, во время развития фазы реполяризации потенциала действия.

Рецепторы для местных анестетиков расположены в S 6 сегменте IV домене внутриклеточной части натриевых каналов. В этом случае действие местных анестетиков снижают проницаемость активированных натриевых каналов. Это в свою очередь вызывает увеличение порога возбуждения, и в конечном итоге, к снижению возбудимости ткани. При этом наблюдается уменьшение числа потенциалов действия и скорости проведения возбуждения. Вследствие этого в области нанесения местных анестетиков формируется блок для проведения нервных импульсов.

По одной из теорий механизм действия средств для ингаляционнго наркоза также описывается с позиций теории парабиоза. Н.Е. Введенский полагал, что средства для ингаляционнго наркоза действуют на нервную систему как сильные раздражители, вызывая парабиоз. При этом происходит изменение физико-химических свойств мембраны и изменение активности ионных каналов. Все эти процессы вызывают развитие парабиоза с уменьшением лабильности, проводимости нейронов и центральной нервной системы в целом.

В настоящее время термин парабиоз используется в частности для описания патологических и экстремальных состояний.

Примером патологического состояния являются экспериментальные неврозы. Они развиваются в результате перенапряжения в коре головного мозга основных нервных процессов – возбуждения и торможения, их силы и подвижности. Неврозы при повторяющемся перенапряжении высшей нервной деятельности могут протекать не только остро, но и хронически на протяжении многих месяцев или лет.

Неврозы характеризуются нарушением основных свойств нервной системы, в норме определяющих взаимоотношения процессов раздражения и возбуждения. Вследствие этого могут наблюдаться ослабление работоспособности нервных клеток, нарушение уравновешенности и др. Кроме этого для неврозов характерны фазовые состояния. Их сущность заключается в расстройстве между действием раздражителя и ответной реакцией.

Фазовые явления могут возникать не только в патологических условиях, но также весьма кратковременно, на протяжении нескольких минут, при переходе от бодрствования ко сну. При неврозе различают следующие фазы:

    Уравнительная

В этой фазе все условные раздражители независимо от их силы дают одинаковый ответ.

    Парадоксальная

В этом случае слабые раздражители дают сильный эффект, а сильные – наименьший эффект.

    Ультрапарадоксальная

Фаза, когда положительные раздражители начинают действовать как отрицательные, и наоборот, т.е. происходит извращение реакции коры головного мозга на действие раздражителей.

    Тормозная

Она характеризуется ослаблением или полным исчезновением всех условнорефлекторных реакций.

Однако не всегда удается наблюдать строгую последовательность в развитии фазовых явлений. Фазовые явления при неврозах совпадают с фазами, ранее открытыми Н.Е. Введенским на нервном волокне при переходе его в парабиотическое состояние.

Экспериментальные факты, составляющие основу учения о парабиозе, Н.В. Введенский (1901) изложил в своем классическом труде «Возбуждение, торможение и наркоз».

При изучении парабиоза, так же как и при исследовании лабильности, опыты проводились на нервно-мышечном препарате.

Н. Е. Введенский обнаружил, что если участок нерва подвергнуть альтерации (т. е. воздействию повреждающего агента) посредством, например, отравления или повреждения, то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется.

Нервно-мышечный препарат помещался во влажную камеру, а на его нерв накладывались три пары электродов для нанесения раздражений и отведения биопотенциалов. Кроме этого, в опытах регистрировались сокращение мышцы и потенциала нерва между интактным и альтерированным участками. Если же участок между раздражающими электродами и мышцей подвергнуть действию наркотических веществ и продолжать раздражать нерв, то ответ на раздражение через некоторое время внезапно исчезает. Н.Е. Введенский, исследуя в подобных условиях действие наркотиков и прослушивая с помощью телефона биотоки нерва ниже наркотизированного участка, заметил, что ритм раздражения начинает трансформироваться за некоторое время до того, как полностью исчезнет ответ мышцы на раздражение. Такое состояние пониженной лабильности было названо Н. Е. Введенским парабиозом. В развитии состояния парабиоза можно отметить три, последовательно сменяющих друг друга, фазы:

Уравнительную,

Парадоксальную и

Тормозную,

которые характеризуются разной степенью возбудимости и проводимости при нанесении на нерв слабых (редких), умеренных и сильных (частых) раздражений.

Если наркотическое вещество продолжает действовать после развития тормозной фазы, то в нерве могут произойти необратимые изменения, и он погибает.

Если же действие наркотика прекратить, то нерв медленно восстанавливает свою исходную возбудимость и проводимость, а процесс восстановления проходит через развитие парадоксальной фазы

В состоянии парабиоза происходит снижение возбудимости и лабильности.

Учение Н.Е.Введенского о парабиозе носит универсальный характер, т.к. закономерности реагирования, выявленные при исследовании нервно-мышечного препарата, присущи целому организму. Парабиоз есть форма приспособительных реакций живых образований на разнообразные воздействия и учение о парабиозе широко используется для объяснения различных механизмов реагирования не только клеток, тканей, органов, но и целого организма.

Дополнительно: Парабиоз - означает "около жизни". Он возникает при действии на нервы парабиотических раздражителей (аммиак, кислота, жирорастворители, КCl и т.д.), этот раздражитель меняет лабильность, снижает ее. Причем снижает ее фазно, постепенно.

Фазы парабиоза:

1. Сначала наблюдается уравнительная фаза парабиоза. Обычно сильный раздражитель дает сильный ответ, а меньший - меньший. Здесь наблюдаются одинаково слабые ответы на различные по силе раздражители(Демонстрация графика).

2. Вторая фаза - парадоксальная фаза парабиоза. Сильный раздражитель дает слабый ответ, слабый - сильный ответ.

3. Третья фаза - тормозная фаза парабиоза. И на слабый и на сильный раздражитель ответа нет. Это связано с изменением лабильности.

Первая и вторая фаза - обратимые, т.е. при прекращении действия парабиотического агента ткань восстанавливается до нормального состояния, до исходного уровня.

Третья фаза - не обратимая, тормозная фаза через короткий промежуток времени переходит в гибель ткани.

Механизмы возникновения парабиотических фаз

1. Развитие парабиоза обусловлено тем, что под действием повреждающего фактора происходит снижение лабильности, функциональной подвижности. Это лежит в основе ответов, которые называют фазы парабиоза.

2. В нормальном состоянии ткань подчиняется закону силы раздражения. Чем больше сила раздражения, тем больше ответ. Существует раздражитель, который вызывает максимальный ответ. И эту величину обозначают как оптимум частоты и силы раздражения.

Если эту частоту или силу раздражителя превысить, то ответная реакция снижается. Это явление - пессимум частоты или силы раздражения.

3. Величина оптимума совпадает с величиной лабильности. Т.к. лабильность - это максимальная способность ткани, максимально большой ответ ткани. Если лабильность меняется, то величины, на которых вместо оптимума развивается пессимум, сдвигаются. Если изменить лабильность ткани, то та частота, которая вызывала оптимум ответа, теперь будет вызывать пессимум.

Биологическое значение парабиоза

Открытие Введенским парабиоза на нервно-мышечном препарате в лабораторных условиях имело колоссальные последствия для медицины:

1. Показал, что явление смерти не мгновенно, существует переходный период между жизнью и смертью.

2. Этот переход осуществляется пофазно.

3. Первая и вторая фазы обратимы, а третья не обратимая.

Эти открытия привели в медицине к понятиям - клиническая смерть, биологическая смерть.

Клиническая смерть - это обратимое состояние.

Биологическая смерть - необратимое состояние.

Как только сформировалось понятие "клиническая смерть", то появилась новая наука - реаниматология ("ре" - возвратный предлог, "анима" - жизнь).

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Эта тема принадлежит разделу:

Физиология

Общая физиология. Физиологические основы поведения. Высшая нервная деятельность. Физиологические основы психических функций человека. Физиология целенаправленной деятельности. Приспособление организма к различным условиям существования. Физиологическая кибернетика. Частная физиология. Кровь, лимфа, тканевая жидкость. Кровообращение. Дыхание. Пищеварение. Обмен веществ и энергии. Питание. Центральная нервная система. Методы исследования физиологических функций. Физиология и биофизика возбудимых тканей.

К данному материалу относятся разделы:

Роль физиологии в диалектико-материалистическом понимании сущности жизни. Связь физиологии с другими науками

Основные этапы развития физиологии

Аналитический и системный подход к изучению функций организма

Роль И.М.Сеченова и И.П.Павлова в создании материалистических основ физиологии

Защитные системы организма, обеспечивающие целостность его клеток и тканей

Общие свойства возбудимых тканей

Современные представления о строении и функции мембран. Активный и пассивный транспорт веществ через мембраны

Электрические явления в возбудимых тканях. История их открытия

Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия

Мембранный потенциал, его происхождение

Соотношение фаз возбудимости с фазами потенциала действия и одиночного сокращения

Законы раздражения возбудимых тканей

Действие постоянного тока на живые ткани

Физиологические свойства скелетной мышцы

Виды и режимы сокращения скелетных мышц. Одиночное мышечное сокращение и его фазы

Тетанус и его виды. Оптимум и пессимум раздражения

Лабильность, парабиоз и его фазы (Н.Е.Введенский)

Сила и работа мышц. Динамометрия. Эргография. Закон средних нагрузок

Распространение возбуждения по безмякотным нервным волокнам

Строение, классификация и функциональные свойства синапсов. Особенности передачи возбуждения в них

Функциональные свойства железистых клеток

Основные формы интеграции и регуляции физиологических функций (механическая, гуморальная, нервная)

Системная организация функций. И.П.Павлов - основоположник системного подхода в понимании функций организма

Учение П.К.Анохина о функциональных системах и саморегуляции функций. Узловые механизмы функциональной системы

Понятие о гомеостазе и гомеокинезе. Саморегуляторные принципы поддержания постоянства внутренней среды организма

Рефлекторный принцип регуляции (Р.Декарт, Г.Прохазка), его развитие в трудах И.М.Сеченова, И.П.Павлова, П.К.Анохина

Основные принципы и особенности распространения возбуждения в ЦНС

Торможение в ЦНС (И.М.Сеченов), его виды и роль. Современное представление о механизмах центрального торможения

Принципы координационной деятельности центральной нервной системы. Общие принципы координационной деятельности ЦНС

Автономная и соматическая нервная системы, их анатомо-фуцнкциональные различия

Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы

Врожденная форма поведения (безусловные рефлексы и инстинкты), их значение для приспособительной деятельности

Условный рефлекс как форма приспособления животных и человека к изменяющимся условиям существования. Закономерности образования и проявления условных рефлексов; классификация условных рефлексов

Физиологические механизмы образования рефлексов. Их структурно-функциональная основа. Развитие представлений И.П.Павлова о механизмах формирования временных связей

Явление торможения в ВНД. Виды торможения. Современное представление о механизмах торможения

Аналитико-синтетическая деятельность коры больших полушарий

Архитектура целостного поведенческого акта с точки зрения теории функциональной системы П.К.Анохина

Мотивации. Классификация мотиваций, механизм их возникновения

Память, ее значение в формировании целостных приспособительных реакций

Учение И.П.Павлова о типах ВНД, их классификация и характеристика

Биологическая роль эмоций. Теории эмоций. Вегетативные и соматические компоненты эмоций

Физиологические механизмы сна. Фазы сна. Теории сна

Учение И.П.Павлова о I и II сигнальных системах

Роль эмоций в целенаправленной деятельности человека. Эмоциональное напряжение (эмоциональный стресс) и его роль в формировании психосоматических заболеваний организма

Роль социальных и биологических мотиваций в формировании целенаправленной деятельности человека

Особенности изменения вегетативных и соматических функций в организме, связанных с физическим трудом и спортивной деятельностью. Физическая тренировка, ее влияние на работоспособность человека

Особенности трудовой деятельности человека в условиях современного производства. Физиологическая характеристика труда с нервно-эмоциональным и умственным напряжением

Адаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к действию экстремальных факторов

Физиологическая кибернетика. Основные задачи моделирования физиологических функций. Кибернетическое изучение физиологических функций

Понятие о крови ее свойствах и функциях

Электролитный состав плазмы крови. Осмотическое давление крови. Функциональная система, обеспечивающая постоянство осмотического давления крови

Функциональная система, поддерживающая постоянство кислотно-щелочного равновесия

Характеристика форменных элементов крови (эритроциты, лейкоциты, тромбоциты), их роль в организме

Гуморальная и нервная регуляция эритро- и лейкопоэза

Понятие о гемостазе. Процесс свертывания крови и его фазы. Факторы, ускоряющие и замедляющие свертывание крови

Группы крови. Резус-фактор. Переливание крови

Тканевая жидкость, ликвор, лимфа, их состав, количество. Функциональное значение

Значение кровообращения для организма. Кровообращение как компонент различных функциональных систем, определяющих гомеостаз

Сердце, его гемодинамическая функция. Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Систолический и минутный объем крови

Физиологические свойства и особенности сердечной мышечной ткани. Современное представление о субстрате, природе и градиенте автоматии сердца

Тоны сердца и их происхождение

Саморегуляция деятельности сердца. Закон сердца (Старлинг Э.Х.) и современные дополнения к нему

Гуморальная регуляция деятельности сердца

Рефлекторная регуляция деятельности сердца. Характеристика влияния парасимпатических и симпатических нервных волокон и их медиаторов на деятельность сердца. Рефлексогенные поля и их значение в регуляции деятельности сердца

Кровяное давление, факторы, обусловливающие величину артериального и венозного кровяного давления

Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и различных веществ между кровью и тканями

Лимфатическая система. Лимфообразование, его механизмы. Функция лимфы и особенности регуляции лимфообразования и лимфотока

Функциональные особенности структуры, функции и регуляции сосудов легких, сердца и других органов

Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр, его эфферентные влияния. Афферентные влияния на сосудодвигательный центр

Гуморальные влияния на сосудистый тонус

Кровяное давление - как одна из физиологических констант организма. Анализ периферических и центральных компонентов функциональной системы саморегуляции кровяного давления

Дыхание, его основные этапы. Механизм внешнего дыхания. Биомеханизм вдоха и выдоха

Газообмен в легких. Парциальное давление газов (О2, СО2) в альвеолярном воздухе и напряжение газов в крови

Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови

Дыхательный центр (Н.А.Миславский). Современное представление о его структуре и локализации. Автоматия дыхательного центра

Рефлекторная саморегуляция дыхания. Механизм смены дыхательных фаз

Гуморальная регуляция дыхания. Роль углекислоты. Механизм первого вдоха новорожденного ребенка

Дыхание в условиях повышенного и пониженного барометрического давления и при изменении газовой среды

Функциональная система, обеспечивающая постоянство газовой константы крови. Анализ ее центральных и периферических компонентов

Пищевая мотивация. Физиологические основы голода и насыщения

Пищеварение, его значение. Функции пищеварительного тракта. Типы пищеварения в зависимости от происхождения и локализации гидролиза

Принципы регуляции деятельности пищеварительной системы. Роль рефлекторных, гуморальных и местных механизмов регуляции. Гормоны желудочно-кишечного тракта, их классификация

Пищеварение в полости рта. Саморегуляция жевательного акта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

Пищеварение в желудке. Состав и свойства желудочного сока. Регуляция желудочной секреции. Фазы отделения желудочного сока

Виды сокращения желудка. Нейрогуморальная регуляция движений желудка

Пищеварение в 12-перстной кишке. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Регуляция и приспособительный характер панкреатической секреции к видам пищи и пищевым рационам

Роль печени в пищеварении. Регуляция образования желчи, выделения ее в 12-перстную кишку

Состав и свойства кишечного сока. Регуляция секреции кишечного сока

Полостной и мембранный гидролиз пищевых веществ в различных отделах тонкой кишки. Моторная деятельность тонкой кишки и ее регуляция

Особенности пищеварения в толстой кишке

Всасывание веществ в различных отделах пищеварительного тракта. Виды и механизм всасывания веществ через биологические мембраны

Пластическая и энергетическая роль углеводов, жиров и белков…

Основной обмен, значение его определения для клиники

Энергетический баланс организма. Рабочий обмен. Энергетические затраты организма при различных видах труда

Физиологические нормы питания в зависимости от возраста, вида труда и состояния организма

Постоянство температуры внутренней среды организма как необходимое условие нормального протекания метаболических процессов. Функциональная система, обеспечивающая поддержание постоянства температуры внутренней среды организма

Температура тела человека и ее суточные колебания. Температура различных участков кожных покровов и внутренних органов

Теплоотдача. Способы отдачи тепла и их регуляция

Выделение как один из компонентов сложных функциональных систем, обеспечивающих постоянство внутренней среды организма. Органы выделения, их участие в поддержании важнейших параметров внутренней среды

Почка. Образование первичной мочи. Фильтр, ее количество и состав

Образование конечной мочи, ее состав и свойства. Характеристика процесса реабсорбции различных веществ в канальцах и петле. Процессы секреции и экскреции в почечных канальцах

Регуляция деятельности почек. Роль нервных и гуморальных факторов

Процесс мочеиспускания, его регуляция. Выведение мочи

Выделительная функция кожи, легких и желудочно-кишечного тракта

Образование и секреция гормонов, их транспорт кровью, действие на клетки и ткани, метаболизм и экскреция. Саморегуляторные механизмы нейрогуморальных отношений и гормонообразовательной функции в организме

Гормоны гипофиза, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов

Физиология щитовидной и околощитовидной желез

Эндокринная функция поджелудочной железы и роль ее в регуляции обмена веществ

Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма

Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты

Роль спинного мозга в процессах регуляции деятельности опорно-двигательного аппарата и вегетативных функций организма. Характеристика спинальных животных. Принципы работы спинного мозга. Клинически важные спинальные рефлексы

Рис.37- ПарабиозА-Схема опыта Н. Е. Введенского по изучению парабиоза .А - электроды для раздражения нормального (неповрежденного) участка нерва; Б - электроды для раздражения "парабиотического участка нерва"; В - отводящие электроды; Г - телефон; К 1 , К 2 , К 3 - телеграфные ключи; S 1 , S 2 и Р 1 , Р 2 - первичные и вторичные обмотки индукционных катушек; М - мышца

Б-Парадоксальная стадия парабиоза . Нервно-мышечный препарат лягушки при развивающемся парабиозе через 43 мин после смазывания участка нерва кокаином. Сильные раздражения (при 23 и 20 см расстоянии между катушками) дают быстро проходящие сокращения, тогда как слабые раздражения (при 28, 29 и 30 см) продолжают вызывать длительные тетанусы (по Н. Е. Введенскому)

1. Отступите от электродов на 1 см в сторону ахиллово сухожилие и наложите на нерв кусочек ваты, смоченный эфиром. Через 8-10 минут нерв повторно раздражайте слабым, средним и сильным током. Несмотря на увеличение силы раздражения, высота сокращений мышцы остается одинаковой (уравнительная фаза парабиоза).

2. При дальнейшем действии эфира, понижается возбудимость и проводимость нерва, на слабое раздражение мышца отвечает большим сокращением, а на сильное – слабым (парадоксальная фаза парабиоза).

3. Наконец, наступает полная потеря возбудимости и проводимости нерва и мышца не реагирует на раздражитель любой силы (тормозная фаза парабиоза). Чтобы действие эфира не прекращалось через каждые 2-3 минуты, глазной пипеткой наносите на вату 1-2 капли эфира.

4. После третьей фазы парабиоза снимите с нерва вату с эфиром. Промойте его 0,6 %-ным раствором хлористого натрия. Раздражайте нерв и вы обнаружите восстановление функций, причем фазы парабиоза пройдут в обратном направлении. Объясните механизм парабиоза и сделайте выводы:



Контрольные вопросы

1. Что такое проводимость и возбудимость нерва?

2. Свойства нервных волокон.

3. Что такое синапс?

4. Передача возбуждения через синапс.

5. Законы проведения возбуждения.

6. Парабиоз Н.Е.Веденского, его фазы.

7. Биоэлектрические явления в организме.

8. Токи покоя и токи действия.

З А Н Я Т И Е № 13

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА,

АНАЛИЗ РЕФЛЕКТОРНОЙ ДУГИ, ИРРАДИАЦИЯ, СУММАЦИЯ, ВОЗБУЖДЕНИЕ, ТОРМОЖЕНИЕ

Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой. Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Вся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов 1. рецепторные,или чувствительные 2. вставочные, замыкательные кондукторные 3. эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам мышцам, железам.

Центральная нервная система состоит из головного и спинного мозга, которые, в свою очередь, образованы множеством нейронов. Наиболее заметная часть головного мозга - большие полушария, представляющие собой центр высшей нервной деятельности. Поверхность их гладкая, без борозд и извилин, свойственных многим млекопитающим. Внутри больших полушарий размещены центры координации инстинктивных форм активности. Мозжечок, находится непосредственно позади больших полушарий и покрыт бороздами и извилинами. Его сложное строение и крупные размеры соответствуют непростым задачам, связанным с сохранением равновесия в воздухе и координацией множества необходимых для осуществления полета и движений.

Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом. Путь, по которому проходит нервный импульс от рецептора до эффектора, действующий орган, называется рефлекторной дугой. Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности.

Цель занятия: исследовать состав рефлекторной дуги, роль каждой составной части в осуществлении рефлекса, зависимость времени рефлекса от силы раздражителя.Ознакомиться с иррадиацией, суммацией, доминантой возбуждения, сеченовским торможением.

Материалы и оборудование: лягушки, препаровальные наборы, вата, марля, индукционный аппарат, метроном, штативы, 0.1%; 0,5%; 0,3% и 1%-ный раствор серной кислоты, 1%-ный раствор новокаина, физиологический раствор.

СТРОЕНИЕ НАТРИЕВЫХ КАНАЛОВ

Na + -потенциало-зависимые каналы плазматических мембран являются весьма сложными белковыми комплексами, имеющими большое многообразие форм в различных тканях. Они обладают общим свойством высокой чувствительностью к ингибирующему действию тетродотоксина (ТТХ) и сакситоксина (СТХ).Представляют собой интегральный белок (М 260 000 - 320 000) состоящий из α- и β-субъединиц. Основные свойства канала определяет α-субъединица, имеющая 4 сходных фрагмента, каждый из которых представлен 6 трансмембранными доменами, которые образуют псевдосимметричную структуру прошивающую насквозь липидный бислой. В центре такой структуры находится пора, напоминающая цилиндр, через которую проходят ионы натрия. С внутренней стороны пора выстлана отрицательно заряженными аминокислотами, а роль сенсора потенциала выполняют аминокислоты (аргинин и лизин) несущие положительный заряд.

Рис. 2. Двумерная модель потенциал-зависимого натриевого канала. Модель предполагает наличие 4 доменов, каждый из которых состоит из 6 трансмембранных α-спиралей белка. α-спирали IV домена чувствительны к изменениям мембранного потенциала. Их перемещение в плоскости мембраны (конформация) переводит канал в активное (открытое) состояние. Внутриклеточная петля между III и IV доменами функционирует как закрывающий воротный механизм. Изберательным фильтром является часть внеклеточной петли между спиралями 5 и 6 у IV домена.

Также, α-субъединица имеет в своей структуре аминокислотную последовательность, гомологичную "ЕF-руке" Са-связывающих белков, типа кальмодулин. Управляющие ворота у них двух типов-активационные (m-ворота) и инактивационные (h-ворота).

Рис. 3. Клеточная мембрана. Натриевый канал.

В условиях функционального покоя (Емп=- 80 мВ), активационные ворота закрыты, но готовы в любой момент открыться, а инактивационные ворота открыты. При снижении мембранного потенциала до -60 мВ, активационные ворота открываются, обеспечивая прохождение ионов Na + через канал в клетку, но вскоре начинают закрываться инактивационные ворота, вызывая инактивацию натриевого канала и прохождение ионов через канал. Некоторое время спустя активационные ворота закрываются, а инактивационные ворота, по мере реполяризации мембраны, открываются, и канал готов к новому циклу работы.



СТАДИИ ПАРАБИОЗА

Различают три стадии парабиоза: уравнительную, парадоксальную и тормозную.

При нормальном функциональном состоянии возбудимой ткани воспроизводство частых и редких потенциалов действия осуществляется без изменения. В участке, который подвергнут длительному воздействию раздражителя (альтерации), в связи с нарушением реактивации натриевых каналов, происходит замедление развития потенциала действия. В результате часть потенциалов действия идущих с высокой частотой (сильное возбуждение), «гасится» в альтерированном участке. Редкие потенциалы действия (слабое возбуждение) воспроизводятся без изменения, так как времени для реактиваци натриевых каналов при низкой частоте в первую фазу парабиоза еще достаточно. Поэтому сильное и слабое возбуждение, проходят через парабиотический участок почти в одном частотном ритме, наступает первая – уравнительная фаза.

По мере углубления инактивации натриевых каналов наступает фаза, когда потенциалы действия с редким ритмом раздражения проходят через участок альтерации, а с частым ритмом раздражения вызывают еще большее углубление нарушения реактивации натриевых каналов и практически не восппроизводятся -–наступает парадоксальная фаза.

Рис. 4. Парабиоз. 1-фоновое сокращение, 2-уравнительная фаза, 3-парадоксальная фаза, 4-тормозная фаза.

В конечном итоге, развивается полная инактивация натриевых каналов; проводимость в участке подвергнутом альтерации полностью исчезает, и сильное, и слабое возбуждение через него уже не может пройти. Наступает тормозная фаза парабиоза. Таким образом, при развитии парабиоза уменьшается возбудимость, проводимость и лабильность возбудимой ткани и повышается ее аккомодация.

Лабильность (от лат. labilis – скользящий, неустойчивый). Функциональная подвижность, свойство возбудимых тканей воспроизводить без искажения частоту наносимых ритмических раздражителей. Мера лабильности – максимальное число импульсов, которое данная структура может передать в единицу времени без искажений. Термин предложен Н.Е. Введенским в 1886 году. По лабильности нейроны из разных областей центральной нервной системы сильно отличаются. Например, двигательные нейроны спинного мозга обычно воспроизводят частоты не выше 200-300 Гц, а вставочные нейроны – до 1000 Гц. Как правило, лабильность аксона нейрона намного выше лабильности тела этого же нейрона.

Возбудимость – способность тканей воспринимать воздействие раздражителей и отвечать на них реакцией возбуждения. Возбудимость связана со специфической чувствительностью клеточных мембран, с их свойством отвечать на действие адекватных раздражителей изменениями ионной проницаемости и мембранного потенциала. Количественной характеристикой возбудимости является порог возбуждения, который характеризуется пороговой силой раздражителя – минимальной силой, способной вызвать ответ возбудимой ткани. Чем выше порог возбуждения, тем больше пороговая сила раздражителя и тем меньше возбудимость ткани.

Аккомодация (от лат. accomodatio – приспособление). Привыкание возбудимой ткани к действию медленно нарастающего или постоянно действующего раздражителя. В основе аккомодации лежит постепенная углубляющаяся инактивация натриевых каналов. Порог возбудимости при аккомодации возрастает, а возбудимость ткани соответственно падает. Инактивация натриевых каналов возникает как следствие длительной деполяризации, вызванное подпороговыми раздражителями. Развивается по тем же законам, что и катодическая депрессия Вериго при длительном дейчтвии постоянного тока при замыкании цепи на катоде.

Проводимость – способность возбудимой ткани проводить возбуждение. Количественно характеризуется по скорости распространения возбуждения в единицу времени (м/с, км/ч и т.д.).

Рефрактерность (франц. Refractaire – невосприимчивый) – кратковременное снижение возбудимости нервной и мышечной ткани во время и вслед за потенциалом действия.

Особенностью парабиотического процесса наряду с его стойкостью и непрерывностью, является его способность углубляться под влиянием приходящих импульсов возбуждения. Поэтому чем сильнее и чаще приходящие импульсы, тем больше углубляют они состояние местного возбуждения в парабиотической области и тем больше затрудняют дальнейшее прведение.

Парабиоз обратимое явление. При снятии альтерирующего агента возбудимость, лабильность и проводимость в данном участке восстанавливаются. При этом все фазы парабиоза проходят в обратном порядке (тормозная, парадоксальная, уравнительная).

МЕДИЦИНСКИЕ АСПЕКТЫ ТЕОРИИ ПАРАБИОЗА

Многие физиологические состояния человека и животных, такие как развитие сна, гипнотические состояния, можно объяснить с позиций парабиоза. Помимо этого, функциональное значение парабиоза определяется механизмом действия некоторых лекарственных средств. Так в основе дейcтвия местных анастетиков (новокаин, лидокаин и др), анальгетиков, средств для ингаляционнго наркоза лежит данное явление.

Местные анестетики (от греч. an – отрицание, aesthesis – чувствительность) обратимо снижают возбудимость чувствительных нервных окончаний и блокируют проведение импульса в нервных проводниках в месте непосредственного применения. Эти вещества используются для устранения боли. Впервые препарат из этой группы кокаин был выделен в 1860 году Альбертом Ниманом из листьев южноамериканского кустарника Erythroxylon coca. В 1879 году В.К. Анреп профессор военно-медицинской Академии С.-Петербурга подтвердил способность кокаина вызывать анестезию. В 1905 году Э. Эйндхорн синтезировал и применил для местной анестезии новокаин. С 1948 года используется лидокаин.

Местные анестетики состоят из гидрофильной и липофильной части, которые соединяются эфирной или алкидной связями. Биологически (физиологически) активной частью является липофильная структура, образующая ароматическое кольцо.

В основе механизма действия местных анестетиков лежит нарушение проницаемости быстрых потенциалозависимых натриевых каналов. Эти вещества связываются с открытыми натриевыми каналами во время потенциала действия и вызывают их инактивацию. Местные анестетики не взаимодействуют с закрытыми каналами в период потенциала покоя и каналами, находящимися в инактивированном состоянии, во время развития фазы реполяризации потенциала действия.

Рецепторы для местных анестетиков расположены в S 6 сегменте IV домене внутриклеточной части натриевых каналов. В этом случае действие местных анестетиков снижают проницаемость активированных натриевых каналов. Это в свою очередь вызывает увеличение порога возбуждения, и в конечном итоге, к снижению возбудимости ткани. При этом наблюдается уменьшение числа потенциалов действия и скорости проведения возбуждения. Вследствие этого в области нанесения местных анестетиков формируется блок для проведения нервных импульсов.

По одной из теорий механизм действия средств для ингаляционнго наркоза также описывается с позиций теории парабиоза. Н.Е. Введенский полагал, что средства для ингаляционнго наркоза действуют на нервную систему как сильные раздражители, вызывая парабиоз. При этом происходит изменение физико-химических свойств мембраны и изменение активности ионных каналов. Все эти процессы вызывают развитие парабиоза с уменьшением лабильности, проводимости нейронов и центральной нервной системы в целом.

В настоящее время термин парабиоз используется в частности для описания патологических и экстремальных состояний.

Примером патологического состояния являются экспериментальные неврозы. Они развиваются в результате перенапряжения в коре головного мозга основных нервных процессов – возбуждения и торможения, их силы и подвижности. Неврозы при повторяющемся перенапряжении высшей нервной деятельности могут протекать не только остро, но и хронически на протяжении многих месяцев или лет.

Неврозы характеризуются нарушением основных свойств нервной системы, в норме определяющих взаимоотношения процессов раздражения и возбуждения. Вследствие этого могут наблюдаться ослабление работоспособности нервных клеток, нарушение уравновешенности и др. Кроме этого для неврозов характерны фазовые состояния. Их сущность заключается в расстройстве между действием раздражителя и ответной реакцией.

Фазовые явления могут возникать не только в патологических условиях, но также весьма кратковременно, на протяжении нескольких минут, при переходе от бодрствования ко сну. При неврозе различают следующие фазы:

1. Уравнительная

В этой фазе все условные раздражители независимо от их силы дают одинаковый ответ.

2. Парадоксальная

В этом случае слабые раздражители дают сильный эффект, а сильные – наименьший эффект.

3. Ультрапарадоксальная

Фаза, когда положительные раздражители начинают действовать как отрицательные, и наоборот, т.е. происходит извращение реакции коры головного мозга на действие раздражителей.

4. Тормозная

Она характеризуется ослаблением или полным исчезновением всех условнорефлекторных реакций.

Однако не всегда удается наблюдать строгую последовательность в развитии фазовых явлений. Фазовые явления при неврозах совпадают с фазами, ранее открытыми Н.Е. Введенским на нервном волокне при переходе его в парабиотическое состояние.

Методы исследования желез внутренней секреции

Для изучения эндокринной функции органов, в том числе и желез внутренней секреции, применяются следующие методы:

    Экстирпации желёз внутренней секреции (эндокринных).

    Избирательное разрушение или подавление инкреторных клеток в организме.

    Трансплантация эндокринных желез.

    Введение экстрактов эндокринной железы интактным животным или после удаления соответствующей железы.

    Введение химически чистых гормонов интактным животным или после удаления соответствующей железы (заместительная «терапия»).

    Химический анализ экстрактов и синтез гормональных препаратов.

    Методы гистологического и гистохимического исследования эндокринных тканей

    Метод парабиоза или создания общего кровообращения.

    Метод введения в организм «меченых соединений» (например, радиоактивными нуклидами, флюоресцентов).

    Сравнение физиологической активности крови, притекающей к органу и оттекающей от него. Позволяет выявить секрецию в кровь биологически активных метаболитов и гормонов.

    Исследование содержания гормонов в крови и моче.

    Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче.

    Исследование больных с недостаточной или избыточной функцией железы.

    Методы генной инженерии.

Метод экстирпации

Экстирпация - хирургическое вмешательство, заключающееся в удалении структурного образования, например, железы.

Экстирпация (extirpatio) от латинского extirpo, extirpare - искоренять.

Различают частичную и полную экстирпацию.

После экстирпации изучают различными методами сохранившиеся функции организма.

С помощью этого метода были открыты инкреторная функция поджелудочной железы и её роль в развитии сахарного диабета, роль гипофиза в регуляции роста тела, значимость коры надпочечников и др.

Предположение о наличии эндокринных функций у поджелудочной железы нашло подтверждение в опытах И.Меринга и О.Минковского (1889 г.), показавших, что её удаление у собак приводит к выраженной гипергликемии и глюкозурии. Животные погибали в течение 2 – 3 недель после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти изменения возникают из за недостатка инсулина - гормона, образующегося в островковом аппарате поджелудочной железы.

С экстирпацией эндокринных желёз у человека приходится сталкиваться в клинике. Экстирпация железы может быть преднамеренная (например, при раке щитовидной железы орган удаляется полностью) или случайная (например, при удалении щитовидной железы удаляются паращитовидные железы).

Метод избирательного разрушения или подавления инкреторных клеток в организме

Если удаляется орган, который содержит клетки (ткани), выполняющие разные функции, дифференцировать физиологические процессы, выполняемые этими структурами трудно, а иногда вообще не возможно.

Например, при удалении поджелудочной железы, организм лишается не только клеток, вырабатывающих инсулин ( клетки), но и клеток, вырабатывающих глюкагон ( клетки), соматостатин ( клетки), гастрин (G клетки), панкреатический полипептид (ПП клетки). Кроме того, организм лишается важного экзокринного органа, обеспечивающего процессы пищеварения.

Как понять какие клетки ответственны за ту или иную функцию? В этом случае можно попытаться избирательно (селективно) повредить какие либо клетки и определить недостающую функцию.

Так при введении аллоксана (уреида мезоксалевой кислоты), происходит избирательный некроз клеток островков Лангерганса, что позволяет изучать последствия нарушения продукции инсулина без изменения других функций поджелудочной железы. Производное оксихинолина - дитизон вмешивается в метаболизм клеток, образует комплекс с цинком, что также нарушает их инкреторную функцию.

Второй пример - избирательное повреждение фолликулярных клеток щитовидной железы ионизирующим излучением радиоактивного йода (131I, 132I). При использовании этого принципа в лечебных целях говорят о селективной струмэктомии, в то время как хирургическую экстирпацию с теми же целями называют тотальной, субтотальной.

К этому же типу методов можно отнести и наблюдение за больными с повреждением клеток в результате иммунной агрессии или аутоагрессии, применение химических (лекарственых) средств, угнетающих синтез гормонов. Например: антитиреоидных средств - мерказолила, попилтиоурацила.

Метод трансплантации эндокринных желез

Пересадка железы может производиться тому же животному после ее предварительного удаления (аутотрансплантация) или интактным животным. В последнем случае применяется гомо- и гетеротрансплантация .

В 1849 году немецкий физиолог Адольф Бертольд установил, что пересадка кастрированному петуху в брюшную полость семенников другого петуха приводит к восстановлению исходных свойств у кастрата. Эту дату считают датой рождения эндокринологии.

В конце XIX века Штейнах показал, что пересадка половых желез морским свинкам и крысам меняет их поведение и продолжительность жизни.

В 20-х годах нашего столетия пересадка половых желез с целью «омоложения» применил Броун-Секар и широко использовал русский ученый С.Воронцов в Париже. Эти опыты трансплантации дали богатый фактический материал о биологических эффектах гормонов половых желез.

У животного с удаленной эндокринной железой можно ее имплантировать заново в хорошо васкуляризированную область тела, например под капсулу почки или в переднюю камеру глаза. Такая операция называется реимплантацией.

Метод введения гормонов

Может вводиться экстракт эндокринной железы или химически чистые гормоны. Гормоны вводят интактным животным или после удаления соответствующей железы (заместительная «терапия»).

В 1889 г. 72 летний Броун Секар сообщил об опытах, проведенных на самом себе. Вытяжки из семенников животных оказали на организм учёного омолаживающее действие.

Благодаря применению метода введения экстрактов эндокринной железы было установлено наличие инсулина и соматотропина, тиреоидных гормонов и паратгормона, кортикостероидов и др.

Разновидностью метода является кормление животных сухой железой или препаратами, приготовленными из тканей.

Использование чистых гормональных препаратов позволило установить их биологические эффекты. Нарушения, возникшие после хирургического удаления эндокринной железы, могут быть откорректированы посредством введения в организм достаточного количества экстракта данной железы или индивидуального гормона.

Применение этих методов у интактных животных привело к проявлению обратной связи в регуляции эндокринных органов, т.к. создаваемый искусственный избыток гормона вызывал подавление секреции эндокринного органа и даже атрофию железы.

Химический анализ экстрактов и синтез гормональных препаратов

Производя химический структурный анализ экстрактов из эндокринной ткани, удалось установить химическую природу и идентифицировать гормоны эндокринных органов, что в последующем привело к получению искусственным путем эффективных гормональных препаратов для исследовательских и лечебных целей.

Метод парабиоза

Не путайте с парабиозом Н.Е.Введенского. В этом случае речь идёт о явлении. Мы будем говорить о методе при котором используется перекрёстное кровообращение у двух организмов. Парабионты - организмы (два или более) имеющие связь между собой через кровеносную и лимфатическую систему. Такая связь может иметь место в природе, например у сросшихся близнецов, или создаётся искусственно (в эксперименте).

Метод позволяет оценить роль гуморальных факторов в изменении функций интактного организма одной особи при вмешательстве в эндокринную систему другой особи.

Особенно важными являются исследования сросшихся близнецов, имеющих общее кровообращение, но раздельные нервные системы. У одной из двух сросшихся сестер описан случай беременности и родов, после чего лактация наступила у обеих сестер, и кормление было возможно из четырех молочных желез.

Радионуклидные методы

(метод меченых веществ и соединений)

Заметьте не радиоактивных изотопов, а веществ или соединений, меченных радионуклидами. Строго говоря вводятся радиофармпрепараты (РФП) = носитель+ метка (радионуклид).

Этот метод позволяет изучать процессы синтеза гормонов в эндокринной ткани, депонирование и распределение гормонов в организме, пути их выведения.

Радионуклидные методы принято делить на in vivo и in vitro исследования. При in vivo исследованиях различают in vivo и in vitro измерения.

Прежде всего все методы можно разделить на in vitro - и in vivo -исследования (методы, диагностику)

In vitro-исследования

Не следует путать in vitro - и in vivo -исследования (методы) с понятием in vitro - и in vivo -измерения .

    При in vivo – измерениях всегда будет in vivo исследования. Т.е. нельзя измерить в организме, то, чего не было (вещество, параметр) или не ввели в качестве тестирующего агента при исследовании.

    Если ввели в организм тестирующее вещество, затем взяли биопробу и провели in vitro – измерения, исследование всё равно следует обозначить как in vivo – исследование.

    Если тестирующее вещество в организм не вводили, а взяли биопробу и провели in vitro – измерения, с введением или без введения тестирующего вещества (реактива например) исследование следует обозначить как in vitro – исследование.

В радионуклидной in vivo диагностике чаще используется захват РФП из крови инкреторными клетками и включается в образующиеся гормоны пропорционально интенсивности их синтеза.

Примером использования этого метода является изучение щитовидной железы с помощью радиоактивного йода (131I) или пертехнетата натрия (Na99mTcO4), коры надпочечников с помощью меченного предшественника стероидных гормонов, чаще всего холестерина (131I холестерола).

При радионуклидных in vivo исследованиях проводят радиометрию или гамма топографию (сцинтиграфию). Радионуклидное сканирование как метод устарело.

Раздельная оценка неорганической и органической фаз внутритиреодного этапа йодного обмена.

При изучении контуров самоуправления гормональной регуляции при in vivo исследованиях применяют тесты стимуляции и подавления.

Решим две задачи.

Для определения характера пальпируемого образования в правой доле щитовидной железы (рис.1) провели сцинтиграфию по 131I (рис.2).

Рис.1

Рис.2

Рис.3

Через некоторое время после введения гормона сцинтиграфию повторили (рис.3). Накопление 131I в правой доле не изменилось, в левой – появилось. Какое исследование проведено пациенту, с каким гормоном? Сделайте вывод по результатам исследования.

Вторая задача.

Рис.1

Рис.2

Рис.3

Для определения характера пальпируемого образования в правой доле щитовидной железы (рис.1) провели сцинтиграфию по 131I (рис.2). Через некоторое время после введения гормона сцинтиграфию повторили (рис.3). Накопление 131I в правой доле не изменилось, в левой – исчезло. Какое исследование проведено пациенту, с каким гормоном? Сделайте вывод по результатам исследования.

Для изучения мест связывания, накопления и метаболизма гормонов, их метят с помощью радиоактивных атомов, вводят в организм и применяют ауторадиографию. Срезы изучаемых тканей помещают на радиочувствительный фотоматериал, типа рентгеновской пленки, проявляют и места затемнения сравнивают с фотографиями гистологических срезов.

Исследование содержания гормонов в биопробах

Чаще в качестве биопроб используется кровь (плазма, сыворотка) и моча.

Этот метод является одним из наиболее точных для оценки секреторной деятельности эндокринных органов и тканей, но он не дает характеристики биологической активности и степени гормональных эффектов в тканях.

Используются различные методики исследования в зависимости от химической природы гормонов, в том числе биохимические, хроматографические и биологические методики тестирования, и опять же радионуклидные методики.

Среди радионуклидных медодов различают

    радиоиммунный (РИА)

    иммунорадиометрический (ИРМА)

    радиорецепторный (РРА)

В 1977 г. Розалин Ялоу получила Нобелевскую премию за усовершенствование методов радиоиммунологического исследования (RIA) пептидных гормонов.

Радиоиммунный анализ, получивший сегодня наибольшее распространение ввиду высокой чувствительности, точности и простоты, основан на применении меченных изотопами йода (125I) или тритием (3H) гормонов и связывающих их специфических антител.

Зачем он нужен?

Много сахара крови У большинства больных сахарным диабетом инсулиновая активность крови снижена редко, чаще она нормальная или даже повышена

Второй пример гипокальциемия. Часто паратирин повышен.

Радионуклидные методы позволяют определять фракции (свободные, связанные с белками) гормонов.

При радиорецепторном анализе, чувствительность которого ниже, а информативность выше, чем радиоиммунного, оценивается связывание гормона не с антителами к нему, а со специфическими гормональными рецепторами клеточных мембран или цитозоля.

При изучении контуров самоуправления гормональной регуляции при in vitro исследованиях применяют определение полного «набора» гармонов различных уровней регуляции, связанных с исследуемым процессом (либеринов и статинов, тропинов, эффекторных гормонов). Например, для щитовидной железы тиролиберина, тиротропина, трийодтирозина, тироксина.

Гипотиреоз первичный:

Т3, Т4, ТТГ, ТЛ

Гипотиреоз вторичный:

Т3, Т4, ТТГ, ТЛ

Гипотиреоз третичный:

Т3, Т4, ТТГ, ТЛ

Относительная специфичность регуляции: введение йода и диойдтирозина угнетает продукцию тиротропина.

Сравнение физиологической активности крови, притекающей к органу и оттекающей от него, позволяет выявить секрецию в кровь биологически активных метаболитов и гормонов.

Исследование содержания предшественников синтеза и метаболитов гормонов в крови и моче

Нередко гормональный эффект в значительной степени определяется активными метаболитами гормона. В других случаях предшественники синтеза и метаболиты, концентрация которых пропорциональна уровням гормона, более доступны для исследования. Метод позволяет не только оценить гормонопродуцирующую активность эндокринной ткани, но и выявить особенности метаболизма гормонов.

Наблюдение за больными с нарушенной функцией инкреторных органов

Это может дать ценную информацию о физиологических эффектах и роли гормонов эндокринной железы.

Аддисон Т. (Addison Tomas), английский врач (1793-1860). Его называют отцом эндокринологии. Почему? В 1855 г. он опубликовал монографию, содержащую в частности, классическое описание хронической надпочечниковой недостаточности. Вскоре её предложили называть аддисоновой болезнью. Причиной аддисоновой болезни чаще всего является первичное поражение коры надпочечников аутоиммунным процессом (идиопатическая аддисонова болезнь) и туберкулёзом.

Методы гистологического и гистохимического исследования эндокринных тканей

Эти методы позволяет оценить не только структурные, но и функциональные характеристики клеток, в частности, интенсивность образования, накопления и выведения гормонов. Например, явления нейросекреции гипоталамических нейронов, эндокринная функция кардиомиоцитов предсердий были обнаружены с помощью гистохимических методов.

Методы генной инженерии

Эти методы реконструкции генетического аппарата клетки позволяют не только исследовать механизмы синтеза гормонов, но и активно вмешаться в них. Механизмы особенно перспективны для практического применения в случаях стойкого нарушения синтеза гормонов, как это случается при сахарном диабете.

Примером экспериментального использования метода может служить исследование французских ученых, которые в 1983 году осуществили пересадку в печень крысы гена, контролирующего синтез инсулина. Внедрение этого гена в ядра клеток печени крысы привело к тому, что в течение месяца клетки печени синтезировали инсулин.